Joe:

I'm sending this again. This time in Unicode format. Hopefully, one will work.

- 1. Phase II Specific Aims
- a. Background and Introduction

This proposal addresses the development of a bioluminescence biosensor

for both "total " blood galactose and urine galactose. The biosensor would

be used to screen newborns for galactosemia, for disease management and for

use by researchers working on new approaches to improve disease management.

The biochemistry of galactose metabolism is summarized in Figure 1. The

current literature addressing the diagnosis and clinical management of galactosemia [1,2,6-13] and our recent discussions with several clinicians

and experts [3-6] (see consultants) suggests that the major immediate need

is for a sensor for both erythrocyte galactose-1-phosphate (Gal-1-P) and

"free" or plasma galactose AND a sensor for urine galactose. There is likely

to be a need for a second generation sensor which also measures urine galactitol and galactonate [1,2,15-16]. These two metabolites are produced

when blood galactose and/or Gal-1-P are elevated and, together or individually, they may be responsible for some of the chronic effects of

galactosemia (1-2, 12-16). Although we are confident that our bioluminescence—based sensing technology can also be applied to the measurement of urine galactitol and galactonate, it is, at this point, not

yet clear if such measurement will indeed be necessary for the chronic management of galactosemia. Thus, we have chosen to focus our efforts in

this Phase II application on first generation sensors for blood galactose

and Gal-1-P and urine galactose. The biochemistry and associated disposable

biosensor platform are the subject of this effort. The luminescence detector component of the device is currently under development and is being

funded by another NIH SBIR [36].

Figures 2 and 3 depict the necessary functions and preliminary design

for the first generation blood sensor, respectively. The urine biosensor

(not shown) is also a two channel device having a galactose channel
and a

creatinine channel, as urine measurements are normally reported relative to

creatinine, to correct for dilution and volume effects. Although it is normally felt that urine galactose is not as useful as blood values for

screening and early management, there is very little data with which to

assess the expected correlation between urine and plasma galactose values at

this time. There is growing sentiment that knowledge of urine galactose,

particularly if provided together with urine galactitol and galactonate, may

be suitable for the management of galactosemia [6]. This may make blood

measurements unnecessary. Urine measurement was a key focus of the Phase I

work. We have also made considerable progress on the analysis of blood

galactose and Gal-1-P. Consequently, we have chosen to focus this Phase II

project on the development of first generation sensors for both urine galactose AND blood galactose and Gal-1-P. The availability of such sensors would permit the study of the correlation between urine and blood

galactose and also facilitate the eventual development of a second generation urine sensor. The blood galactose/Gal-1-P sensor would be immediately applicable to the management of galactosemia and to clinical

research addressing this disease.

The Phase I research established the feasibility of using a homogeneous, multi-enzyme bioluminescence assay for galactose via galactokinase and the ATP-firefly luciferase-luciferin bioluminescence reaction to produce light that is inversely proportional to the concentration of galactose [27,30]. In the phase II effort, we will develop

and optimize the biosensor for both the management of galactosemia and as a

research tool for better understanding of the disease.

The blood galactose biosensor design depicted in Figures 2 and 3 is comprised of two channels, one for free plasma galactose and one for "total"

galactose (plasma galactose plus galactose—1—phosphate in erythrocytes). The

galactose existing as galactose-1-phosphate (Gal-1-P) can be then determined

by subtracting plasma galactose from the total galactose. In the free plasma

galactose channel (Channel 1) plasma is separated from the formed elements

of the blood sample and the free plasma galactose is determined using galactokinase and the firefly bioluminescence reaction. In the "total"

galactose channel (Channel 2), erythrocyte Gal-1-P is released via cell

lysis and then converted to galactose using a phosphatase, followed by galactose analysis as in the Channel 1 analysis.

The urine biosensor for galactose incorporates the free galactose channel approach of Figure 1 with urine as the sample rather than blood.

Consequently, a blood separation means is not necessary. The basic biochemistry and subsequent bioluminescence approach are the same. The

urine biosensor will also have a second channel for measuring blood creatinine for reference purposes. At this time, we have an NIH Phase T

SBIR underway to develop a creatine-based bioluminescence sensor for blood

and urine creatinine (1R43 DK55426-01, "Creatinine Biosensor for Renal Transplant Monitoring")

Both the urine and blood galactose biosensors will utilize a small,

hand held CCD-based luminometer [36] for signal detection, processing, and

recording. This device (Bio-light?) is currently being developed in house

and is funded by another NIH SBIR ("CCD-based Analyzer for Multi-Channel

Biosensor" 1R43 RR13087-1). This detector will also be applicable to the

analysis of other metabolites using other specific biosensors. Figure 4

summarizes our experience with the detection of bioluminescence by various

methods.

- b. The Phase II Specific Aims are:
- 1. Optimize the individual biochemical reactions and basic functions for

each of the three zones in the blood galactose biosensor. Refer to Figures

2 and 3. It is anticipated that each channel of the galactose/Gal-1-P biosensor will require about 50 ?L of blood. For reference, a normal lancet

derived finger tip blood drop used for glucose monitoring by Type I diabetics is 50-100 ?L.

(a) Zone 1 - Blood Processing/Pre-treatment: The first step is to

lyse

erythrocytes and release galactose-1-P. Several erythrocyte lysing approaches will be evaluated, i.e., several surfactants, enzymes and commercial red cell lysing reagents will be evaluated for this purpose. Of

course, hemoglobin, ATP, ATPases and other enzymes will also be released

during lysis. The freed cellular ATP will be consumed by a variety of ATPases in the cell lysate. The galactose-1-phosphate released must be converted to galactose. Alkaline phosphatase (EC.3.1.3.1), or another suitable phosphatase, will be employed to hydrolyze the phosphoric monoester

bond of galactose-1-phosphate to produce galactose. This enzyme will also

consume any residual ATP in the lysate. We will evaluate the performance of

alkaline phosphatase from several sources for this purpose. These processes are depicted in Reactions 1 and 2 of Figure 2. Note that this

step is only required for the Gal-1-P channel.

(b) Zone 2 - Protein Removal In this region, residual cells, cell membranes

and proteins (particularly the hemoglobin and any residual ATPases) will be

largely removed by a combination of filtration and non-specific adsorption.

A variety of commercial blood cell-plasma separation materials and wicking

materials currently used for immunoassays will be evaluated for optimal

separation of components [23]. This zone may also include predeposited

buffers and/or precipitants to facilitate adsorption or aggregation of most

of the protein in the lysate [23].

(c) Zone 3 - Bioluminescence Signal Generation When the clarified, largely

protein free, plasma reaches this zone the galactose originating from both

 $\operatorname{Gal}-1-\operatorname{P}$ and free plasma galactose will be acted upon by galactokinase with

the subsequent depletion of pre-deposited ATP. The residual ATP left after

the reaction is quantified by the firefly reaction employing luciferin oxidation catalyzed by luciferase and utilizing ATP. Luciferase is a much

slower enzyme than galactokinase, thus the luciferase responds to the depleted ATP level with a bioluminescence output which is proportional to

the ATP concentration and inversely proportional to the galactose

concentration [27,30]. These processes are depicted in Reactions 3 and 4 of

Figure 2. Activity here will focus upon optimizing the reactants for good

sensitivity and accuracy in the analysis range.

2. Device Construction and Performance Optimization. After the various

parameters of the three zones are thoroughly understood and optimized, the

three zones will be combined together into a two channel biosensor device.

The current design prototype is illustrated in Figure 3. Evaluation and

optimization of this prototype will then proceed. Of primary concern is the

appropriate generation of galactose from Gal-1-P and filtration of most of

the proteins and enzymes from the lysate. Of special importance is the

removal of much of the hemoglobin (it can absorb the bioluminescence) and

the ATPases which could consume some of the analyte ATP in Zone 3.

3. Development of urine biosensor for galactose. The optimization activities described in Aims 1 and 2 above will also be applied to the urine

biosensor. A galactose channel very similar to that described for plasma

will be developed and evaluated. Blood cell separation and protein removal

functions will, however, not be necessary. This will make the actual sensor

much easier to develop. The creatinine channel needed for optimal, quantitative urine analysis will be available from a parallel project [36].

The primary effort will be focused on adjusting the concentration of reagents in the bioluminescence Zone 3 to accommodate the lower galactose

concentration range of urine.

4. Preservation of Biosensor Analytical Reagents. Dry reagents are a virtual necessity to enhance the stability and shelf-life of the biosensor.

Our experience with a variety of preservation techniques suggests that lyophilization yields the best result for long term storage. We will study

the optimum conditions (combination and concentration of preservatives,

temperature and vacuum control) for the lyophilization process. Various

lyophilization approaches will be evaluated in short term (120 day) stability tests. The most promising conditions and formulations will

then

be evaluated in longer term (one year) stability studies. The effect of

various storage conditions on reagent preservation will also be evaluated.

Preservation success will be evaluated by comparing the stored samples with

- a fresh standard multi-enzyme bioluminescence reference assay.
- 5. Preparation of Recombinant Enzymes. Both luciferase and galactokinase
- (EC.2.7.1.6) are very expensive. Galactokinase is only available from a few

commercial sources. Both enzymes account for a considerable fraction of

the biosensor cost, so less expensive and reliable sources are highly desirable. Recombinant protein engineering, expression, purification and

characterization are proposed to generate both firefly luciferase and galactokinase in house. Through our University of Utah collaborator and

consultant, Dr. R. Stewart, we have already expressed and regularly produce

an engineered firefly luciferase which can be immobilized and purified in

one step using small poly-histidine and biotin segments [29]. Preliminary

studies in Dr. Stewart's lab indicate that we can also express engineered

galactokinases with similar properties [37]. We plan to express, produce,

purify, and characterize galactokinase and galactokinase—luciferase hybrids

[25]. The availability of such hybrids will permit less expensive,

reproducible, reliable and probably higher activity sources of our key biochemical reagents. We also plan to produce modified galactokinases with

altered enzyme activities, thus facilitating preparation of biosensors with

higher or lower analytical sensitivity for galactose and galactose-1-phosphate. We also expect to utilize galactokinase sequences

from thermophilic organisms for enhanced enzyme stability.

6. Performance Validation of the Biosensors. The blood and urine galactose

biosensors will be evaluated for accuracy, precision and linearity for the

ranges of galactose encountered in blood and urine. The reference standard

assay for galactose will be the galactose dehydrogenase based

spectrophotometric assay [27, Appendix 1].

2. Significance

A need exists to screen all newborns for galactosemia [1,2,7,8].

though this metabolic disease is quite rare (about 1 in 60,000 live births),

the consequences of missing the rare case are traumatic for both the patient

and family and costly for the healthcare system. Newborns in the United

States are regularly screened for several inborn errors of metabolism during

the first days of life, e.g., galactosemia, phenylketonuria, maple syrup

urine disease, homocystinuria, etc. Currently, 46 states screen for galactosemia. A typical screening requires that a blood sample be drawn and

sent to a central clinical lab as a dried spot on a sample card. The test

costs between \$10 and \$40 with a mean of about \$20. Most importantly, the

results are often not available for several days. Infants with "classic" or

transferase deficiency galactosemia develop jaundice, fail to gain weight

and grow, act lethargic and exhibit liver and spleen enlargement [1,7,8].

Without dietary intervention they often die of sepsis within two weeks of

birth. Early detection of galactosemia and prompt implementation of a galactose—free diet can result in elimination of the acute mental and physical effects of the disease, however, such intervention must be in the

first few days of life and is, quite literally, a matter of life and death.

If dietary control is instituted late or dietary compliance is poor, cataracts and mental retardation occur. The current trend toward early

discharge of mother and child following birth often results in hospital

stays of less than 24 hours. This works against early detection and treatment of galactosemia. Point of care newborn testing for galactosemia

at birth has the potential to reduce delays in diagnosis and treatment thus

lowering the impact to the national healthcare system.

Although galactosemia is routinely screened for in American newborn

screening programs, it is not screened in several European nations.

There

are several methods used in the USA for the screening of galactosemia in

newborns, but they require specialized laboratory instrumentation and trained personnel and taking a blood sample followed by the time needed for

transport to a central lab for analysis. No simple quantitative "dipstick"

assay is currently available. There is a need for a fast and accurate screening technology. A low cost, instrument based biosensor or "dipstick"

seems most appropriate for these purposes. In fact, a point of care blood

glucose test is regularly performed on newborns only 4-6 hours after birth

as a screen for diabetes. A point of care test for blood galactose and

galactose-1-phosphate could just as easily be performed as an early screen

for galactosemia. If the screen is positive a lactose (galactose) free diet

could be initiated immediately, three or more days earlier than would happen while confirmation is pending from the typical clinical laboratory.

Significantly elevated levels of galactose or Gal-1-P in blood are

indicative of possible galactosemia. Positive screening tests are often

followed by specific galactose enzyme assays, which indicate the type of

galactosemia or the presence of a benign variant, such as the Duarte variant. Because the acute consequences of elevated blood galactose are so

severe (cataracts, liver problems, mental retardation, and often death via

sepsis), nearly all patients with suspected galactosemia are placed on galactose restricted diets. The Duarte variant patients are often kept on

galactose restricted diets until their blood galactose reaches normal levels

6 to 12 months after birth [1-11,34].

Galactosemia is considered to be an "orphan" disease, because of its

low incidence. The relatively large firms that routinely supply diagnostic

kits and equipment have tended to ignore the need for inexpensive, easy-to-use, assays for the screening and dietary management of galactosemia. Even for a small, niche company like ours the galactosemia

"market" does not appear profitable. However, there is growing

recognition

of the need to better monitor and manage inborn metabolic diseases, and it

is likely that appropriate economic incentives for "orphan" devices will

materialize in the near future. Studies of tightly monitored and regulated

Type I Diabetes have demonstrated both the health and economic benefits of

frequent monitoring and aggressive disease management. The phenylketonuria

(PKU) community is also beginning to recognize such benefits [20,21]. Regular monitoring of galactosemics is likely to result in better management

and improved outcomes [4]. Unfortunately, galactosemia is more complex and

less understood than PKU. Although early and rigorous dietary management

does indeed prevent the severe, acute consequences of the disease, long term

problems often result, even with aggressive management [1,2,15-19].

Figure 1 illustrated the simplified, normal metabolism of galactose. The

most common form of galactosemia ("classic" or transferase defficiency)

results from a deficiency of galactose-1-phosphate uridyltransferase (GALT).

The absence of GALT results in highly elevated levels of Gal-1-P, which, in

turn, causes elevated levels of galactose. Even if galactose is rigidly

controlled via dietary lactose restriction it still accumulates in the blood

and tissues due to the presence of galactose in many foods, including fruits

and vegetables (9-12). Also, galactose is an endogenous component of the

body as it is a key component of galacto-proteins and galacto-lipids. Galactose can apparently be incorporated in these compounds via the glucose-1-P and UDP-galactose pathways. See Figure 1. The natural turnover

and recycling of galacto-proteins and related compounds results in the endogenous production of galactose. The resultant elevated galactose and

Gal-1-P levels promote the production of galactitol and galactonate, resulting in their abnormally high levels. Galactose can be reduced to galactitol via aldose reductase as in Reaction 7 of Figure 2. Galactitol is

then excreted in the urine. Galactose may also be oxidized to galactonate

by galactose oxidase in Reaction 6 of Figure 2. The galactonate can then be

metabolized to xylulose and carbon dioxide. It is possible that galactitol

and/or galactonate are responsible for the chronic, insidious problems of

galactosemics; it is also possible that their problems may be due to abnormal production and/or synthesis of galacto-proteins or galacto-lipids.

The issue is far from clear [1,2,4, 12-19,34].

It is difficult for the biochemical and clinical research communities

to make rapid progress due to the relative difficulty in accessing suitable

numbers of patients. Both funding and patients are greatly limited, typical

problems with rare, orphan diseases. The patient issue could be partially

alleviated by the availability of a simple, minimally invasive, inexpensive

assay which patients and their care-givers could routinely use to monitor

and manage their disease AND provide a substantive increase in the amount of

clinical biochemical data for the research community. The availability of

the internet has allowed much of the galactosemia community to communicate.

organize and interact [22]. This will enhance the organization, involvement, and empowerment of this community in better disease management

and participation in research that will hopefully lead to better understanding, treatment and outcome for this insidious, orphan disease.

A major first step in meeting the analytical needs is this Phase

application. The development and availability of a dipstick-like device to

measure blood galactose, Gal-1-P and urine galactose (the first generation

of our Galactose Direct! sensor) will provide improved disease management,

patient/provider empowerment AND the much needed data for research. We hope

to follow this work with the development of a second generation sensor (Galactose Direct II) which will include the analysis of urine galactitol

and galactonate, providing far more biochemical information for research and

hopefully treatment. The metabolites galactose, galactose-1-

```
phosphate,
glucose-1-phosphate, galactitol and galactonate, individually or in
combination, may be responsible for the negative outcomes observed in
surviving galactosemics.
     Patients with the more common Duarte variant (1 in 5,000 births)
should be on a galactose restricted diet and should be monitored for
first 6 to 12 months of life. This population substantially increases
potential market, making it more comparable to PKU. There is also a
market
opportunity in those regions which do not yet have screening programs
place for galactosemia, such as England, Wales and France [4]. The
market would still be small, but one appropriate to a small firm such
as
        We should at least break even, while developing a set of
technologies which we can, hopefully, apply to other, more profitable
markets. We have been greatly inspired by the dedication, motivation,
and
commitment of the various communities involved with galactosemia and
PKU,
and we believe we can help.
3. Phase I Final Report
SBIR Phase I Grant No. 1 R43 MH57591-01
Project period and Dates of Service for Key Individuals: 10/01/97
through
04/30/98
Kev Individuals and Level of Effort:
        Project Role
                       % FTE % Effort
Name
C.-Y. Wang, Ph.D.
                   Principal Investigator
                                             100
                                                     50
Rob Scheer, Ph.D. Research Scientist
                                                              50
R. Van Wagenen, Ph.D. Research Scientist
                                                         100
20
Mara Hammer Lab Technician
                                                   50
50
J.D. Andrade, Ph.D. Technical Advisor
                                                          25
     This report summarizes two periods of activity: (1) the work done
the Phase I project itself, which concluded on 04/30/98 and (2)
additional
work done using internal funds through 04/13/99. The latter work was,
part, based on the critique to our Phase II proposal. The present
proposal
is a highly augmented and revised submission of the original Phase II
```

proposal.

The critical objective of the phase I research was to assess the feasibility of a direct reading quantitative, dipstick type sensor for the

measurement of galactose in urine (an indicator of galactosemia). The

specific aims of this Phase I Research were to:

 Characterize the available galactokinases with respect to cost, specificity, pH and

temperature stability, and sensitivity.

- 2. Study galactose in water solution using the luciferase based ATP detection system.
- 3. Study the singular effect of individual urine components on the luciferase-based ATP

detection system, including: glucose, lactose, fructose, maltose, pentose, chlorine, sodium,

urea, creatinine, uric acid, and ketone bodies.

4. Quantitate galactose in commercial urine standards using the luciferase

based ATP

detection system.

5. Study device stability and reliability with emphasis on the preservation

of galactokinase and

ATP.

Phase I Results by Specific Aim

1. Characterize the available galactokinases with respect to availability.

cost, specificity, pH and temperature stability, and sensitivity.

Although there are several sources for galactokinase, the only commercially available source was from galactose adapted yeast. The literature summary of galactokinase enzymes is summarized in Table I. The

kinetic characterization of the E. coli enyzme has been reported [33]. Galactokinase was purchased from Sigma (G-0130). Recombinant luciferase was made and purified in the laboratory of R. Stewart [29],

of our consultants. D-Luciferin was purchased from Molecular Probes. Mg204?7H20 was purchased from Mallinckrodt. The urine standard was from

Scantibodies Laboratory, Inc. (level 2, Lot No. C882B). All other chemicals

were obtained from Sigma. All the reagents were prepared in 0.45 M glycyl

glycine (gly-gly) buffer, pH 7.8, unless specified otherwise.

The specific activity of recombinant luciferase was determined by our

standard in house protocol [27]. 50 [?] l of 10 mM ATP in 0.45 M gly-gly

buffer, 40 ?l of 1mg/ml BSA in 0.45 M gly-gly buffer, and 10 ?l of 5

?q/ml

luciferase in 0.45 M gly-gly buffer were mixed in a 12x50 mm disposable

polypropylene test tube. 50 [?]l of 0.1 mM luciferin/10 mM MgS04[?7H20 in 0.025

M gly-gly buffer was added to the tube by an auto injector.

Bioluminescence

was recorded by a Turner TD 20/20 luminometer for 10 s. The flash peak intensity divided by total amount of luciferase in the assay is used to

represent the specific activity of the enzyme. The whole procedure was repeated three times with a fixed luciferase concentration. The averaged

specific activity from three runs is 7.170.21 x108 Relative Light Units

(RLU)/mg based on a Turner TD 20/20 luminometer.

The specific activity of galactokinase [27] was determined using 100 mM

of D-galactose, 5.9 mM ATP, 16.2 mM phospho (enol) pyruvate (PEP), 800 mM

KCl, 100 mM MgCl2, and 20 mM ethylenediaminetetraacetic acid (EDTA) prepared

in reagent grade water. 3.76 mM ?—Nicotinamide adenine dinucleotide (?—NADH)

was prepared in 160 mM potassium phosphate buffer. A pyruvate kinase/lactate

dehydrogenase mixture was prepared in 1:1 volume ratio of glycerol and 0.45

M gly-gly buffer. The total activity of pyruvate kinase and lactate dehyhrogenase was 500 U/ml and 200 U/ml, respectively. 5.75 ml of 160 $^{\rm mM}$

potassium phosphate buffer, 1.5 ml of ATP, 1.5 ml of PEP, 1.5 ml of KCl, 1.5

ml of MgCl2, 1.5 ml of EDTA, and 0.5 ml of ?—NADH were mixed together as a

reaction cocktail. The pH of reaction cocktail was adjusted to 7 at

temperature with 1N HCl or 1N NaOH if necessary. 917 [?] of reaction cocktail

was then added to a quartz cuvette, followed by 17 ? I of pyruvate kinase/lactate dehydrogenase mixture, then 33 ? I of galactokinase solution.

The reaction was started by adding 33 [?] of 100 mM galactose. Absorbance was

measured with a Beckman-35 UV-Vis spectrophotometer at 340 nm. Absorbance ${\sf N}$

was recorded immediately after the addition of galactose and every minute

afterwards up to 5 min. Background absorbance change can be measured by

replacing galactokinase solution with buffer. The activity of galactose was

calculated from the change of absorbance according to the following equation:

[?] Units/mg = [?A340nm / min test - ?A340 nm / min blank] /
[(6.22)(xmg /
mlRM)]

Where 6.22 is the millimolar extinction coefficient of ?—NADH at 340 nm, RM

refers to reaction mixture; x is the total amount of galactokinase in $1\ \mathrm{ml}$

reaction mixture.

The specificity of the galactokinase was studied using the ATP-firefly

bioluminescence assay [27]. Because the turnover rate of galactokinase is

2000 times faster than the luciferase, a lower light intensity can be interpreted as the consumption of ATP by the galactokinase catalyzed phosphorylation of galactose. Using a set of standard assay conditions, a

decrease in light intensity of 98% was observed after 30 minutes in the

presence of galactose while the

other sugars resulted in a decrease in light intensity of only 5.1-5.4% and

much of that arises from the intrinsic ATP consumption of luciferase itself.

See TABLE II. These results suggest that galactokinase is very specific to galactose.

The pH sensitivity of galactokinase was also studied using the bioluminescence assay. Galactokinase showed variable activity in the pH

range from 6.2 to 8.6 (Table II). In acidic solution (pH 6.2) the galactokinase catalyzed phosphorylation reaction was slow and only about 77%

of the ATP was consumed after a 10 min reaction. In basic (pH 8.6) and

neutral solution (pH 7.0-7.8) the reaction was faster and up to 99% of the

ATP was consumed after 10 min reaction at pH 8.6 However, for all pH

conditions tested (pH 6.2-8.6), a 30 min incubation was sufficient for

galactokinase to reach the equilibrium of the phosphorylation reaction.

Consequently, we elected to conducted our work at the pH value where luciferase catalyzed bioluminescence is optimal, i.e., 7.8

Recombinant luciferase in solution retained about 86% activity after

being stored at 4 oC for four weeks. Galactokinase in solution was stored

at -20 oC, 4 oC, room temperature and 37 oC for four days. Our results

indicate that the best galactokinase activity retention (58%) was at 4 oC.

Galactokinase activity dropped to zero when stored at 37 oC for several

hours. It is obvious that galactokinase is a labile enzyme and cannot be

stored in solution at room temperatures for long times, thus stabilization

and preservation processes must be developed. This is one of the specific $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

aims of Phase II. Consideration should also be given to recombinant protein

engineering of enzyme reagents from thermophilic organisms which typically

have more thermally robust biochemistries. This is considered in Specific

Aim 5.

2. Study galactose in water solution using the luciferase based ATP detection system.

A semi-quantitative assay for galactose was developed using a substrate

controlled approach. 45 [?] of Solution A [two volume units of galactokinase

(4 Units/ml) plus 2.5 volume units of bovine serum albumin (0.8 mg/ml) and 8

mM dithiothritol (DTT)] was mixed with 50 [?] trehalose (500 mg/ml) and 30 [?]

Solution B [two volume units of 2 mM luciferin plus one volume unit of recominant luciferase (1.62 \times 108 RLU/ml]. Different ATP concentrations (0,

0.5, 1, 3, 5 and 10 mM) were prepared in 0.45 M glycylglycine buffer, pH

7.8. Sample solutions containing different amount of galactose (0, 0.5, 1,

3, 5 and 10 mM) were prepared in 0.45 M glycylglycine buffer, pH 7.8. Fifty

microliters of sample solution and 50 microliters of ATP solution were then

added to the enzyme assay. The bioluminescent intensity generated was recorded with both a CCD camera (Santa Barbara Instrument Group, ST-6 opto-head) and photographically using a Tektronix C-4 CRT camera with Polaroid 667 film (3000 ISO).

In this ATP range, the bioluminescent intensity of the luciferase reaction is not linearly related to the ATP concentration. However, this

semi-quantitative assay can measure a range of galactose

concentrations

between 0-0.5, 0.5-1, 1-3, 3-5, or 5-10 mM. This is illustrated in Figure

5 where a prototype biosensor for galactose is composed of six vertical

wells creating a gradient of ATP concentration. Each horizontal row of

wells was loaded with ATP (0, 0.5, 1, 3, 5 and 10 mM ATP from bottom to

top). The bright spots on each horizontal sensor strip decreased as the

galactose concentration increased. Figure 5 is a photographic record of

such a sensor array responding to various concentrations of galactose. This semi-quantitative sensor can be described as a spatial array of light

intensity detectable either visually, photographically or with a CCD camera.

3. Study the singular effect of individual urine components on the luciferase-based ATP detection system, including: glucose, lactose, fructose, maltose, pentose, chlorine, sodium, urea, creatinine, uric acid,

and ketone bodies.

Sugar solutions containing 10 mM glucose, fructose, lactose, maltose,

sucrose, trehalose, D-ribose, 0.4 M NaCl, 0.5 M urea, 5 mM uric acid, 7.4 mM

acetoacetic acid, 2.84 mM ascorbic acid, and 0.58 mM hydroxybutyrate were

prepared in reagent grade water. In micro-titer wells, 20 [?] l of 8 mg/ml BSA,

8 mM DTT, 20 $\ref{thm:local_topology}$ l of 2 U/ml galactokinase, 25 $\ref{thm:local_topology}$ l of 10 mM galactose in 0.025 M

gly-gly buffer were mixed. The galactokinase reaction was initiated by adding 25 [?] of 50 mM MgSO4[?]7H2O and 50 [?] of 1 mM ATP in 0.45 Mgly-gly

buffer. 2 min later, the BAR was added to the microtiter well. Bioluminescence was recorded by a SBIG ST-6 CCD camera at 1 min, 8 min, and

 $28\ \text{min}$ after the addition of the BAR. The integration time of the CCD camera

was 20 s. Controls were performed by replacing the interfering components

with reagent grade water. The whole procedure was repeated to study the

interfering effects on luciferase alone by replacing the galactokinase solution with 0.45 M gly-gly buffer (pH 7.8).

We know that the bioluminescence assay is inhibited by urine [31]. At

the concentrations indicated most of the compounds added did not

inhibit the

galactokinase assay. Sodium chloride was the only chemical that showed

significant inhibition. Our studies with a urine standard showed a decrease

of about 20% in bioluminescent intensity. This is caused primarily by the

presence of the chloride ion in the urine. The results of these studies are

shown in TABLE II [33]. The specificity of galactokinase for galactose is

clearly evident. The only major interference is from sodium chloride. This

can be addressed by appropriate calibration of the final sensor.

4. Quantify galactose in commercial urine standards using the luciferase

based ATP detection system.

To simulate clinical cases, a urine standard (Scantibodies Laboratory,

Santee, CA, Lot # C8102C) termed Syscon was used in this study. This urine

standard was sent to Children's Hospital, Los Angeles, CA for determination

of the baseline galactose. The test showed only 4.6 ?M galactose in the

urine standard. Galactose standards (1, 2, 4, 6, 8, 10, 15, and 20 mM) were

prepared in Syscon standard urine. Ten [?] of 40 [?]M ATP in 0.45 M gly-gly

buffer, 20 ?l of 4.5 ?g/ml firefly luciferase in 0.45 M gly-gly buffer, 2 ?l

of 1 U/ml galactokinase in 1 mg/ml BSA, and 28 [?]l of 1 mg/ml BSA were mixed

in a 1.7 ml microcentrifuge tube. Ten [?] l of galactose standard was added

followed by the addition of 50 ?l 0.1 mM luciferin/ 10 mM MgSO4?7H20 mixture

in 0.025 M gly-gly buffer with an auto injector. Bioluminescence was recorded by a Turner TD 20/20 luminometer for 300 s. The results of this

study are discussed in the final section of this progress report and in the Appendix.

5. Study device stability and reliability with emphasis on the preservation of galactokinase and ATP.

A lyophilization protocol was developed to enhance the storage stability of the complete assay. The galactose assay was prepared in two

buffer systems: 10 mM Tris and 100 mM Tris, pH 7.5. The other components in

the buffer include 0.3 mg/ml BSA, 3.1 mM DTT, 57.7 mg/ml PEG 8000, 123 mg/ml $\,$

trehalose, 19.2 mM MgSO4, 0.6 mM luciferin, 0.15 unit/ml luciferase, and 1.2 $\,$

unit/ml galactokinase. 65 [?] l of the assay was delivered to each well of a

multi-well strip and tested with bioluminescent assay. The other assays

were frozen at -70~oC overnight. The frozen assays were then placed in a

freeze-dryer and dried at below -20 oC for 24 hr. The lyophilized assays

were rehydrated with 65 [?] de-ionized water for 10 min and then the assay

performance was tested in the same way as the fresh assay.

There is very little deterioration of performance, about 3%, for assays

preserved and lyophilized in the lower concentration buffer and stored at

room temperature for one month (Figure 6). For the assay preserved with the

higher concentration buffer (100 mM Tris not shown) a 54% lower performance

was observed. The preservatives and the lower concentration buffer successfully preserve the assay performance. A lower ionic strength and pH

resulted in improved stability. This was probably due to preventing luciferin oxidation.

Additional Phase I Progress Relevant to Phase II Proposal

1. Homogeneous Bioluminescent Assay for Galactose

Much of Mr. J.-Y. Eu's extensive work [27,37] was completed after the

formal end of the Phase I grant period. Limited space allows a discussion

of the following results.

a. Cross Interference between the Two Reactions

One of the most important considerations in coupled reactions is the

possible cross interference between the two reactions. Cross interference

must be minimized. The activity of firefly luciferase was determined in the

presence of the substrates from the galactokinase reaction, and vice versa.

The results are summarized in Table III.

For the firefly luciferase reaction, the alteration in enzyme activity

was represented by normalizing the peak intensity to the control (no interfering components). For the galactokinase reaction, the effect was

calculated by normalizing the absorbance change at 340 nm to the control.

since the activity was determined using a spectrophotometer. All the results

show less than 7.6% change in enzyme activities (Table III). This suggests

that cross interference is small when the two reactions are coupled. Besides

the components studied in Table II, the adenosine-5'-diphosphate (ADP),

product from the galactokinase reaction has been known to be a competitive

inhibitor for ATP in the firefly luciferase reaction (Ki = 2.5 mM). Since

the initial ATP concentration in the assay was 3.3 ?M, ATP was the limiting

substrate for both galactokinase and firefly luciferase. The final concentration of ADP in the assay should be less than 3.3 ?M, far below its

inhibition constant. ADP formed during the reaction should not significantly

influence the activity of firefly luciferase. The results suggest that the

reaction of galactokinase and firefly luciferase do not interfere with each

other, assuring that a homogeneous assay for galactose is practical. b. Galactose Concentration Determination with Bioluminescence Assay

Figure 7 shows the light intensity profile for a homogeneous galactose

assay from 0 to 300 s. The control experiment (Figure 7, curve A, no added

galactose) showed the typical pseudo steady state kinetics of firefly luciferase with the expected slow decrease in light intensity. All the intensity time profiles reached a similar maximum intensity at about 3 s,

suggesting that the delay in light emission is probably due to the mixing of

the reactants. The decrease following the maximal light intensity agrees

with exponential decay (fitted lines not shown, but R2 for all the fitted

curves are greater than 0.95, except for the control which ideally should be

constant light emission). For higher concentrations of galactose in Figure 7

(10, 15, and 20 mM), the decays are very similar due to the saturation of

galactose. The kinetics of the reactions have been thoroughly modeled (See

Reference 27 and the Appendix). A simplified expression is:

Equations (1) – (5) are defined and presented in Reference 27 and the Appendix.

By taking the reciprocal of both sides of equation (6), a linear relation between $1/\ln(10/1t1)$ and 1/[gal]0 is derived:

where the slope is KaKb/V1t1 and the intercept is Kb/V1t1. The plot of 1/(ln(I0/It1) against 1/[gal]0 should produce a straight line (Figure 8).

Ideally, curve A in Fig. 7 (0 mM galactose) should remain a constant light

output since there is no galactose present. However, there is about 10%

light intensity decrease due to the firefly luciferase reaction for the

first 60 s. This intensity decrease is compensated in Figure 8 by adding the $\ensuremath{\mathsf{S}}$

difference between Imax (0 mM galactose) and I60 (0 mM galactose) to the

intensities at 60 s for other galactose-containing samples. It is reasonable

to use the maximal light intensity (Imax) to approximate the initial light

intensity (I0) used in the mathematical analysis since different initial

concentrations of galactose all reached similar maximal light intensity at

roughly the same time due to mixing. In Figure 8, the observation time was

chosen to be 60 s (t1= 60 s) since most of the assumptions made in the derivation of Equation (7) are valid at the beginning of the reaction.

Figure 8 shows a good linear fit (R2=0.99) for urine containing 1 to 20

mM galactose. For normal newborns during the second to sixth day after birth, the galactose concentration in urine ranges from 0.02 to 6.27 mM with

a mean of 1.13 mM, which is mostly covered by the linear range of the assav.

For adults, the galactose concentration in urine ranges from 0 to 0.57 $\,$ mM.

To determine galactose concentration beyond the linear range using the current assay, the sample needs to be diluted or concentrated. The lower

detection limit (1mM galactose) results from the slow consumption of ATP by

galactokinase. At galactose concentration lower than 1 mM, the background

ATP consumption by the firefly luciferase reaction becomes predominant. The

higher detection limit (20 mM galactose) results from galactose saturation

as described before. These approximate limits on the concentration range

for galactose and galactose-1-P can be changed by using galactokinases with

different reactions characteristics. See Specific Aim 5.

Standard urine was tested for ATPase activity and residual ATP concentration to assure the accuracy of the calibration curve in Figure 7

Standard urine is essentially free of ATPase activity by measuring ATP concentration using firefly luciferase bioluminescence. Residual ATP concentration in the urine was 1.8 nano mol/L determined by firefly luciferase bioluminescence using internal ATP standards. Residual galactose

in standard urine was 4.6 ?mol/L, determined by Biochemical Genetics Laboratory of Children's Hospital, Los Angeles, USA. Since the galactose

concentration in standard urine was spiked into the millimolar range, the

residual galactose in standard urine is insignificant. The pH change due to

the addition of standard urine is negligible (from 7.8 to 7.67) since the

assay has enough buffer capacity to maintain the pH.

The homogeneous bioluminescence assay was compared with the galactose

dehydrogenase-based spectrophotometric assay. See Figure 9. The bioluminescence assay has a good agreement with the spectrophotometric assay

using standards (1 to 8 mmol/L galactose) prepared in Syscon standard

The galactose dehydrogenase—based galactose assay is an end point assay

which requires an incubation period to convert the galactose present to

NADH. The length of the incubation period also depends on the concentration

of galactose present in the sample. For a high galactose sample, the assay

generally needs at least 30 mins to bring the reaction close to equilibrium.

The kinetic bioluminescence assay requires a relatively short reaction time

and provides similar accuracy over the physiological relevant concentration range.

c. Effect of Galactitol and Galactonate

In urine, galactonate ranges from 0.18 to 10.6 mM and galactitol ranges

from 0.51 to 118.7 mM. All the values are converted from mmole/mole creatinine by using an approximate urinary creatinine concentration of 9 mM.

The effect of galactonate and galactitol on the bioluminescence assay was

studied with galactose containing standard urine spiked with galactonate and

galactitol up to 25 mM and 125 mM, respectively. Galactose standards (5 and

10 mM) were prepared in Syscon standard urine (lot# C8102C) as previously

characterized. Each galactose standard was spiked with 2.5 mM galactonate/12.5 mM galactitol and 25 mM galactonate/125 mM galactitol.

Galactose concentration was determined as described previously. Bioluminescence was recorded for 180 s.

Figure 10 shows the intensity time course in the presence of galactonate and galactitol; all samples contained 10 mM galactose. All the

curves in Figure 10 are almost identical, which suggests that galactonate

and galactitol have minimal effect on the assay up to 25 mM and 125 mM, $\,$

respectively.

The galactose concentrations determined by using the standard curve in

Figure 7 are: 9.28 ? 0.48 (curve A, 0 mM galactonate/ 0 mM galactitol).

10.37 ? 0.81 (curve B, 2.5 mM galactonate/ 12.5 mM galactitol), and 9.8 ?

0.73 $\overline{\mbox{mM}}$ (curve C, 25 $\overline{\mbox{mM}}$ galactonate/ 125 $\overline{\mbox{mM}}$ galactitol). All the values are

the average of triplicates. The result demonstrates that the presence of

galactonate and galactitol have minimal effect on the accuracy of the assay.

Identical experiments were performed for standard urine with 5 mM galactose.

The same conclusion was reached.

2. Preliminary Blood and Plasma Studies

A number of studies were conducted related to the development of

sensor for plasma galactose and erythrocyte Gal-1-Phosphate. The background

ATP level in plasma is about two orders of magnitude lower than the initial

ATP level used in an ATP consumption assay, including our galactose assay.

Blood contains various ATPases which will compete with galactokinase and

luciferase for ATP. These endogenous ATPases result in a decrease in added

ATP level from 100 micromolar to 1 micromolar or so in 20 minutes. Other

preliminary work showed that the ATPase activity can be eliminated by thermal denaturation of the plasma, by non-specific adsorption and by 2

molar ammonium sulfate precipitation. Depending upon the specific design

and kinetics of the biosensor, endogenous blood ATP must be considered. See

Specific Aim #1 of this Phase II application.

Analysis of Gal-1-P requires that it be released from erythrocytes.

This is addressed in Zone 1 of Specific Aim 1. Our preliminary work has

shown that the commonly used erythrocyte lysing reagent saponin (Sigma R1129, 0.2% saponin) was very effective in lysing erythrocytes at a concentration of 0.1% saponin. In addition, we found that these small

amounts of saponin detergent did not inhibit the luciferase bioluminescent

ATP assay. Indeed, the presence of the saponin actually appeared to enhance

the bioluminescence intensity (the effect of "detergent enhancement" has

been observed by others).

Preliminary work with the alkaline phosphatase in buffered solutions

has shown that it is indeed suitable for the conversion of Gal-1-P to galactose. We were able to convert 90 percent of 2.5 mM galactose-1-phosphate to galactose in less than one hour using 0.9 Units of

calf intestine mucosa alkaline phosphatase in a volume of 200 <code>?L.</code> Alkaline

phosphatase can also be used to remove endogenous ATP since nucleoside triphosphotates are natural substrates for the enzyme.

During the development of the ATP bioluminescence platform we evaluated

several approaches to the detection of emitted bioluminescent light. The

results of this work were summarized in Figure 4. The original work addressed an ATP biosensor with an ATP consumase gradient that produced a

spatial distribution of bioluminescent light when observed in the dark. much

like a glowing thermometer. See Figure 5. The concept does indeed work,

however, there are a variety of problems with human visual detection; foremost among these being that: (1) there is a wide range in visual

response and dark adaptation in the general population, (2) there is no

verifiable, permanent record for documentation and quality control, (3)

visual sensitivity is limited compared to the electro-optic approaches, and

(4) examination in the dark is inconvenient. Luminometers which employ

photomultiplier tubes (PMTs) are the quantitative monitoring standard and

are extremely sensitive being able to detect pico-molar (sub femto-moles) of

ATP, however, these devices are quite expensive (even the small hand-held

instruments cost several thousand dollars). We are developing small, hand

held luminometers (Bio-Light?) for the analysis of inexpensive, disposable

biosensors which employ bioluminescence. These instruments utilize inexpensive, silicon based charge coupled devices (CCD) arrays and PIN photodiodes. These detectors are more than adequate to detect the luciferase catalyzed, ATP-luciferin bioluminescence originating from our

galactose biosensors (ATP analyte is in the range of 10-5 to 10-7 molar) as

shown in Figure 4. Figures 2 and 3 summarize the current design of these

galactose biosensors. These sensors are envisioned to be $5-10~\mathrm{mm}$ wide.

about 20 mm long and about 1 mm thick. This Phase II proposal addresses the

development of these galactose biosensors.

Conclusion: The Phase I studies and subsequent work have demonstrated the

feasibility of a homogeneous, multi-enzyme, ATP depletion type bioluminescence assay for galactose in urine [27]. Preliminary results

conducted with blood are encouraging. The original concept of a spatial

distribution of light with a pattern or linear distribution inversely proportional to the concentration of galactose was verified. However, the

variability in human visual response and the lack of a rigorous quantitative

capability via visual detection argues against this approach. Instead. we

have shown that a electro-optic approach using an inexpensive CCD camera

provides the necessary quantitative capability necessary for the galactose

biosensor.

- 4. Experimental design and methods
- 1.Sensor Design and Functional Zones

The design of the sensor has undergone several iterations and improvements.

Although the basic approach is similar to that in the previous Phase II

application, the design has been greatly simplified and improved (Figures 1,

2). In the Phase I proposal we emphasized direct visual detection and demonstrated its feasibility in the Phase I work (Figure 5). Our emphasis on

visual detection has changed as a result of our discussion with clinicians

and caregivers [3-6] and the relatively recent insight gained from the galactosemia community that the optimum management of galactosemia is likely

to require the measurement of several analytes and analysis of their ratios

as well as absolute concentrations. Also, the information needs of researchers would best be met by analytical means which can record, store

and transmit data. As a result, we initiated the development of a relatively inexpensive, small, hand held analyzer capable of detecting and

quantifying the biosensor bioluminescence. The device called Bio-Light[?] is

based on an inexpensive charge coupled device (CCD) camera and imaging optics. Various CCD cameras have been evaluated and a functional prototype

device has been constructed. Evaluations conducted to date indicate that

the prototype signal levels are more than adequate to quantify galactose and

galactose occurring as Gal-1-P in blood and urine galactose (Figure 4).

The focus of this work will be on the disposable, multi-channel biosensor for galactose (Galactose Direct?). Both Galactose Direct? and

Bio-Light? will be designed to be compatible. The blood sample for the

sensor will be obtained via a standard lancet typical of that used by diabetics for glucometer samples. The amount of blood necessary will be a

typical droplet of 50-100 <code>?L</code> volume. The droplet will be deposited in the

receiving depression of the biosensor (Figure 3) which will contain a fill

indicator line to indicate that sufficient blood plasma has been

collected

to complete the reactions in Zones 1-3 (Figures 2 and 3).

Blood Preparation Zone 1 - Blood erythrocytes will be lysed in Zone 1 of

Channel 2 (Figure 3). A variety of cell lysing agents will be evaluated for

this purpose, i.e., detergents, lipases, etc. Red cell lysing reagent (0.2%

saponin) will be obtained from Sigma. Whole blood will be purchased from

Vital Products, Inc., St. Louis, MO. Ten ml of whole blood will be mixed and

incubated with different amounts of lysing reagent at room temperature. All

work with biological materials will be performed in a Level 2 containment

hood. All blood and urine samples will be commercially obtained and certified to be free of pathogens such as HIV and hepatitis antigen. An

aliquot of 100 [?] cell lysate will be withdrawn and observed with a microscope every minute. Hematocrit will also be determined. The ATP in the

cell lysate will be determined by a bioluminescent assay. The hematocrit,

cell number, and amount of ATP will be used as indices to evaluate the completeness of the lysing reaction. The ATP amount increases as the cell

contents empty followed by a sharp decrease as intracellular ATPases consume

the ATP, as demonstrated in our preliminary work. We will also evaluate

various phospholipases as lysis agents if we run into problems with saponin

and related detergents. Our preliminary work with saponin suggests that it

is very satisfactory, although we have not yet examined its long term preservation via drying and reconstitution — that work is also part of this

specific aim.

Alkaline phosphatase will be more thoroughly evaluated for removal of

endogenous ATP (already demonstrated). Alkaline phosphatase is a robust

enzyme widely used in immunoassays. The conversion of galactose-1-phosphate

to galactose will also take place in Zone 1 of channel 2 (Figure 3). Alkaline phosphatase catalyses the hydrolysis of almost any phosphomonoester

to release inorganic phosphate (Pi) and the corresponding nucleotide, alcohol or sugar at alkaline pH. The activity of alkaline phosphatase

depends on the presence of divalent metal ions such as Mg++ and Zn++. Steady state kinetic analysis indicates that alkaline phasphatase obeys

Michaelis-Menton kinetics [42]. The turnover rate of alkaline phosphatase

from different sources ranges from 1,450 - 6550 s-1. Alkaline phosphatases

are generally very stable enzymes at room temperature and they have been

used to convert gal-1-P to galactose [43,44]. The reference range of galactose-1-phosphate in red blood cells is 0-0.04 mM for a normal person

and above 1 mM in galactosemics. We will evaluate the performance of the

alkaline phosphatases in glycyl glycine buffer for 0-1~mM galactose-1-phosphate. The galactose produced will be measured with the

quantitative method developed in the Phase I work. The standard reference

assay for galactose in all of our studies will be the galactose dehydrogenase based spectrophotometric assay [27, Appendix 1]. The optimal

pH, divalent ion concentration, and enzyme concentration will be determined.

A wide range of these enzymes can be obtained from Sigma Chemical Co.

The region into which the blood sample is applied in channel 2
will

include pre-deposited lysis agent and pre-deposited alkaline
phosphatase.

Preservation of these agents is addressed in Specific Aim 4. The fluid leaving Zone 1 is therefore a blood "lysate" with its gal-1-phosphate converted to galactose and endogenous ATP removed. Channel 1, the free

plasma galactose channel, is different. Here the erythrocytes are trapped

but not lysed. The function of this zone is to obtain free plasma and determine its galactose level. We will study various surface passivation

agents to minimize cell lysis or hemolysis in this channel. The cell-free

plasma leaves Zone 1 and enters Zone 2.

We will evaluate a wide range of materials for the filtration and reagent support functions, including surfactant coated polyester wicks manufactured by Filtronia Richamond, cellulose nitrate membranes of various

pore sizes (0.2 ?m to 12 ?m) manufactured by several companies (Millipore,

Paul-Gelman Sciences, Whatman, Micron Separations, Sartorius, Schleicher &

Schuell, etc.), and both lateral and vertical flow blood separation

membranes manufactured by Spectral Diagnostics-Prime Care, Whatman (PlasmaSep), Pall Gelman (Hemasep V and H) and others that may become available. Prior to application of the enzyme the membranes and wicking

materials will be treated with a 1 mg/ml solution of bovine serum albumin to

decrease the detrimental effects of surface-enzyme reactions. The membranes

will be evaluated in terms of effective separation of blood cells from plasma, minimizing the amount of damage to cellular elements and minimizing

the amount of plasma volume necessary to fill the pores of the material.

Filtration Region - The Zone 1-Zone 2 boundary may require a filter for

cells and cell debris. Its purpose in channel 1 is to permit only plasma to

move through; its purpose in channel 2 is to permit the lysate, filtered of

unlysed cells and cell fragments, to move through. A range of filters will

be evaluated. These materials are relatively standard and widely used in

the invitro diagnostics (IVD) industry (23). They are essentially the kind

of materials noted above for Zone 1. It is quite possible that this filtration function can be completely accomplished using the materials evaluated for Zone 1.

Adsorption Region (Zone 2) — This region is continuous with the macrofiltration region noted above. This is a relatively high capacity protein adsorption zone whose main purpose is to remove endogenous ATPases.

including any alkaline phosphatase arising from Zone 1. The materials evaluated for this zone are those previously described. A primary function

of this zone is to remove as much hemoglobin as possible although all of the

hemoglobin need not be removed. Our preliminary work on galactose and ATP

analysis in lysed blood suggests however, that hemoglobin is not a significant interferent to either the galactokinase or luciferase reactions.

Nevertheless, we can remove much of the hemoglobin in Zone 2 thereby even

further minimizing possible optical and chemical interferences. There are

several commercial sources of high surface area membranes designed to remove

large quantities of protein by passive adsorption and also by covalent bonding to pre-activated surfaces (Pall Gelman, Millipore, etc.) we

will

thoroughly characterize the adsorption capacity of such candidate membranes

particularly for hemoglobin, albumin and endogenous ATPases.

Signal Generation Region (Zone 3) — We have already established that a

homogeneous (galactokinase and luciferase together with other bioluminescent

reagent) assay for galactose based on ATP depletion and bioluminescent detection works very well in solution (27). We must now demonstrate that

this is also the case for reagents that are immobilized on reagent support

membranes and subsequently freeze dried in place. We must identify the

appropriate support membrane substrate that provides sufficient surface area

and at the same time does not appreciably denature the reagent enzymes. We

are confident that this can be addressed with albumin passivation and one of

the commercial membranes previously mentioned. We believe that passive

trapping of the bioluminescent reagents in the membrane of Zone 3 is practical, however as the moving front of advancing plasma wets Zone 3 it

will re-hydrate the reagents and possibly carry some of them out of the

zone. If too much reagent is lost in this fashion smaller pore size membranes will be evaluated as well as covalent immobilization to retain

them in zone 3.

The bioluminescence arising from the reactions depicted in Reactions 4

and 5 of Figure 2 must escape from Zone 3 and be detected. Because these

reactants are dispersed throughout the reagent support membrane of Zone 3

bioluminescence will arise throughout this zone, thus the concern that

presence of hemoglobin would absorb a significant fraction of the light.

Hemoglobin will be studied as an optical and chemical interferent in Zone

3. However, we have determined that the presence of the hemoglobin will not

pose much of an absorbance problem due to its removal and the very

layer of support material. Of most importance is the fact that even though

these membrane materials are white they are generally opaque so most of the

bioluminescence we have observed to date actually comes from the surface and

near surface of the materials. We are confident that even the emitted surface bioluminescence would be sufficient to provide adequate signal so

the presence of a considerable amount of hemoglobin reaching Zone 3 is not

considered to be too serious.

2. Device Construction and Performance Optimization

Based on the results of Aim #1, we will modify, adjust and optimize the

relative dimensions and placements of the zones to optimize the kinetics and

performance of the galactose biosensors. The goal is to have the test completed within 60 to 90 seconds after application of the blood sample and

insertion of the strip into the reader. Here we will also consider the

rigidity of the strip itself, the possible requirements for a air tight,

foil cover to minimize photo-oxidation of the components such as luciferin,

the implementation of a "proper fill" indicating region (see Figure 2) and

related practical issues of a reliable, reproducible, quantitative, prototype biosensor. One of the most important issues in the overall design is to chose materials and device dimensions which do not consume

large quantities of plasma fluid sample. This issue would tend to drive the

pore size specification (and thus priming or fill volume) down for our membranes in all three zones. The purpose of this Specific Aim is to fully

optimize and finalize the design of Figure 2 so that we have functional

biosensors for galactose. It is anticipated that the housing of our biosensor will be a poly(vinyl chloride) or similar material which is common

to the IVD industry. Obviously, such a material would need to be inexpensive and easily to manufacture.

3. Urine Sensor for Galactose

The urine galactose channel is very similar to the free plasma galactose channel (Channel 1 shown in Figure 2). The design will be less

challenging because no blood cells will have to be separated from the sample

in Zone 1 and the amount of protein requiring removal in Zone 2 will be much

smaller than that of the blood plasma galactose channel. The primary focus

will be the modification of the necessary bioluminescent reagents to produce

an acceptable signal from the generally lower concentration of galactose

that may be present in the urine sample. We can address lower bioluminescent signals by adding more reagent (particularly luciferase) to

the reagent mix which will be placed in Zone 3.

The second channel in the urine galactose sensor is a creatinine sensor, as creatinine is the normal reference for all quantitative urine

assays. We are currently developing a creatine/creatinine biosensor which

is being funded by a Phase I NIH SBIR grant [36]. The approach we are using

for this biosensor is also a homogeneous, multi-enzyme ATP depletion assay.

The reactions are as follows:

? Creatinine + H2O ----? Creatine (catalyzed by creatininase)

? Creatine + ATP ----? creatine phosphate + ADP
(catalyzed

by creatine kinase)

ATP + 02 + luciferin ------ AMP + Pi + oxyluciferin + CO2 + LIGHT

(firefly luciferase)

The bioluminescence produced in this fashion is again quantified with our

Bio-Light? CCD based analyzer. Our preliminary studies already indicate the

feasibility of this approach, including a rather extensive kinetic simulation and model (38).

4. Preservation of Biosensor Analytical Reagents

A primary concern regarding the practicality of our biosensor design is

the long term stability of the governing enzymes and substrates. In this

case, we are most concerned with the storage stability of luciferase, luciferin, galactokinase, phosphatase, galactose, and ATP. We believe that

storage periods of at least one year at room temperature are the minimum

necessary specification and short periods of several days at 30 ?C may also

be encountered. Preliminary studies using a lyophilization process and

several preservatives have shown positive results (Phase I report). The

Phase I lyophilization process included several preservatives. Polyethylene

glycol, PEG, (8,000 M.W.) was included as a freezing protectant (50 mg/ml)

[39]. Trehalose was included as a dehydration protectant (120 mg/ml) [40].

Bovine serum albumin (0.3 mg/ml) was included as a denaturation protectant

[41] and 3 mM dithiothreitol (DT) was employed as a sulfide bond linkage

protectant. The Phase I work was done with a research grade lyophilizer

that gave no quantitative indication of the process pressure or temperature

of the materials during the freezing and lyophilization.

We have subsequently purchased a production capacity lyophilizer (Virtis

Model 12EL Genesis) which has full capability to provide temperature control of the lyophilization chamber shelves and condenser and provides

measurements of the chamber pressure and shelf temperature throughout the

freezing and lyophilization process. It now appears that our better controlled lyophilization process, as described below, will effectively

preserve the viability of the governing enzymes and substrates for long term

storage at room temperature in desiccated conditions in the absence of light

and water vapor.

The lyophilization process closely follows protocols prescribed in the

pharmaceutical literature [41]. After mixing the preservatives with the

reagents necessary for the biosensor application, the solution is either

pipetted into individual test wells or applied to BSA treated membranes or

other wicking material for preservation. The sample is frozen to −70?C for

at least one hour. The final step in the preservation process involves

removing the water from the reagent solution at high vacuum and various

shelf temperatures. The moisture removal begins with temperatures near -30? C and ends near room temperature or slightly higher to drive off

additional bound water. The drying process lasts approximately 24 hours.

Once the samples are dry, they can be stored in the dark at room

temperature

in dry air for extended periods without significant loss of activity. We will investigate various freezing and lyophilization protectants.

We have found dextran T40 to be a good alternative to PEG and sucrose to be

good alternative to trehalose. It is important to minimize the presence of

even trace amounts of heavy metals and to maintain rigorous control of the

freezing rate and lyophilization shelf temperature. The primary variables

to be evaluated in Phase II are: (1) preservation cocktail composition (the

benefits of DTT, EDTA and bovine serum albumin are well established, but the

optimal concentrations will have to be determined), (2) PEG's, dextrans and

sugars such as sucrose will be evaluated in various concentrations.

Freezing rates will be optimized and the optimal shelf temperatures for both

primary and secondary drying will be determined. (4) The amount of bound

water in the final product will be determined using DSC. The primary guidance on this work will be from the many publications by Dr. John Carpenter's group [39,40]. The primary criteria of success will be to

maximize the galactokinase and luciferase activity during freezing and lyophilization and to ensure the long term preservation of the assay for

periods of at least one year. To some extent, unavoidable activity losses

can be accounted for by adding excess luciferase, galactokinase, ATP and

luciferin to the assay before the preservation process begins.

5. Preparation of Recombinant Proteins

Recombinant galactokinase can be genetically engineered to facilitate

the fabrication of the sensor such as immobilization through an avidin-biotin interaction. The galactokinase gene (galK) from Escherichia

coli will be isolated from genomic DNA using PCR technique. The galk gene

purified from PCR will also carry two unique restriction endonuclease cutting sites using appropriate PCR primers (BamH I site at 5' end and Eag I

at 3' end). We have been using recombinant firefly luciferase for several

years. The recombinant firefly luciferase is fused with a histidine

tag and

a biotin carboxyl carrier protein (BCCP) domain at its amino terminus [29].

The most straightforward approach is to replace the firefly luciferase gene

(luc) on the vector we have been using with galK gene. See Figure 11 below.

Figure 11. Construction of pET 24a (+) BCCP-galK plasmid by replacing the

firefly luciferase gene (luc) with galactokinase gene (galK). ATG: start

codon; (His)6: six histidine tag; *: stop codon.

The luc gene-containing vector pET 24a (+) BCCP-luc will be digested

with restriction endonucleases $\operatorname{BamH}\ I$ and $\operatorname{Eag}\ I$ to remove luc gene. The galk

gene can be ligased into the vector using DNA ligase since the gene carries

the same restriction endonuclease cutting sites. The fused gene can be transformed to a competent E. coli strain to express the protein.

The expressed recombinant galactokinase is fused with a histidine tag and

a BCCP domain on its amino terminus. Histidine tag binds specifically to

Ni2+ with a binding constant of K=1013M-1 at pH 8. A nitrilotriacetic acid-agarose conjugate (NTA-agarose) contains four chelation sites for metal

ions, which can bind strongly with Ni2+. A Ni2+-NTA column can be used to

purify histidin-tagged galactokinase. The purification procedure for histidine-tagged protein is much simpler than the traditional protein purification procedure since the common precipitation and chromatography

steps can be avoided. It is sometimes necessary to immobilize enzymes in

biosensor applications. The BCCP domain can be used to immobilize recombinant galactokinase through an avidin-biotin interaction. The histidine tag can also be used in immobilization. The purity of the recombinant galactokinase will be determined by SDS-PAGE. The basic kinetic

constants (Km, Vmax) will be measured spectrophotometically. We expect to

work with several recombinant galactokinases, including mutants with enhanced thermal stability and altered kinetic constants. The latter should

facilitate the galactose and gal-1-P analysis at higher and lower analyte

concentrations. BCCP-galactokinase can also be fused with firefly luciferase to produce a bi-functional fusion protein. Fusion protein can

simplify the fabrication of the biosensor. Depending on the time and resources available, we will also develop a galactokinase-luciferase hybrid

enzymes [37].

We have requested equipment funds with which to establish a small recombinant enzyme development and characterization laboratory. Dr. Russell

Stewart, consultant and Scientific Advisory Board Member together with D.-J.

Min and a molecular biologist (to be hired), will establish and validate

this recombinant protein lab.

6. Performance Validation

The biosensors will first be tested in simple buffer solutions, followed by more comprehensive testing in commercially available blood and

urine samples which have been certified to be free of HIV and hepatitis

antigens. Internal standards (known amounts of galactose and/or galactose-1-phosphate) will be added for calibration purposes. The accuracy, linearity and precision of the assays will be determined. Variations between various sensors will also be determined. Our results

will be referenced against standard spectrofluorometric assays for galactose

and gal-1-P[27, Appendix 1]. Results will be compared to determine the

probability of false positives and false negatives. The clinical chemistry

service provided by an established and accredited analytical laboratory,

such as Associated Regional University Pathologists, Inc. (ARUP) in Salt

Lake City, UT and Children's Hospital Clinical Labs, Los Angels, CA, will

also be used to for confirmation of testing results.

A limited number of sensors will also be made available to our clinical

collaborators (Drs. Leonard and Berry) for testing and assessment in their

own facilities. These studies will be part of their ongoing clinical and

research activities purely for experimental testing purposes and as

will require the approval of their own in house Institutional Review

Boards.

Phase III

We expect this Phase II research and development to result in a practical, functional, dry reagent, in vitro diagnostic biosensor prototype

for the quantification of blood galactose and galactose-1-phosphate. $\mbox{\sc A}$

second functional biosensor prototype will also be developed for urine galactose. We refer to these devices as Galactose Direct!?. A subsequent

generation biosensor would be developed for galactitol and galactonate if

current ongoing biomedical research indicates a diagnostic need for analyzing these species in blood or urine. All of the biosensors under

development will utilize the same electro-optic bioluminescence detecting

instrument (Bio-light?) specifically designed and developed for our Direct?

line of disease-specific analytical "dipstick" biosensors [35]. This is now

under development in house.

One of us (J.D. Andrade) will be speaking with the FDA In Vitro Diagnostics Group in late May, 1999 to begin the process related to appropriate FDA oversight of our in vitro diagnostic device development.

His recent discussion paper, "Personal Sensors in the Home", prepared for a

recent NSF/FDA Home Healthcare Workshop, is available at www.hctr.be.cua.edu

(click on HCT workshop then on Resource Materials).

As soon as we have a fully functional analytical device for quantifying

the bioluminescence (Bio-light?) and functional prototype biosensors for

galactose (Galactose Direct?) we will begin discussing possible collaborative relationships with interested, larger partners to generate

additional follow on funding necessary for device refinements, clinical

testing and validation, FDA approvals, and scale up production and marketing. Our goal is to find a partner with a well established marketing

and distribution capability while our company provides the technical expertise and possibly the manufacturing and production of the analytical

devices of disease-specific, clinical biosensors. The first such sensors

will be for galactosemia management and later for PKU management and kidney

function monitoring [36].

5. Human Subjects No human subjects will be used in this research. All

human samples will be obtained from commercial sources which are certified

to be negative for HIV and hepatitis antigens.

6. Vertebrate Animals No work with vertebrate animals is planned for this

work.

7. Consultants

Three consultants are budgeted for this Phase II work. Their letters agreeing to consult are included in this proposal with the exception of Dr.

Berry's letter which did not arrive in time. Dr. Russell Stewart is

Associate Professor in the Department of Bioengineering at the University of

Utah. He has previously served as a consultant and Principal Investigator to

our company on a Phase II NSF STTR subcontract which addressed recombinant

firefly and bacterial luciferase. Dr. Stewart will meet with us monthly to

assist us in the areas of protein engineering and protein characterization.

He will assist us in transferring the recombinant luciferase know how over

to our company. This will also be particularly crucial as regards our proposed work to develop the in house galactokinase protein engineering

capability in our own facility. Dr. Claire Leonard, M.D., is an Associate

Professor of Pediatrics and Director of the Metabolic Program in the Department of Pediatrics at the University of Utah School of Medicine. She

has a thorough background in the genetics and biochemistry of inborn metabolic erros of metabolism with special interest in PKU and galactosemia.

Dr. Leonard will be advising us in the area of clinical monitoring needs for

galactosemia patients. It is anticipated that he input will pave the way

for a more appropriate sensor design in follow on Phase III work. Dr. Gerald Berry, M.D. is is a senior physician at The Children's Hospital of

Philadelphia. His areas of professional interest are pediatric endocrinology, medical genetics, and clinical biochemical genetics. He has

published numerous articles addressing the chronic long term effects of

galactosemia and the biochemistry that may lead to these manifestations.

Dr. Berry will be advising us on the needs and methods of monitoring both

urine galactose as well as galactitol and galactonate assay in urine and

blood.

In addition to the consultants proposed for this research our strong

Scientific Advisory Board will continue to serve in an advisory and consulting capacity with reimbursement from other sources. The board members are as follows:

Dr. Woody Hastings - Professor of Biology at Harvard University. Dr. Hastings is internationally recognized for his basic research on bioluminescence.

Dr. Vladimir Hlady - Associate Professor of Bioengineering at the University

of Utah. Dr. Hlady is an expert on the study of proteins at surfaces using

interfacial fluorescence spectroscopy in conjunction with CCD detectors.

Dr. Henry Kopecek - Professor of Pharmaceutics and Bioengineering at the

University of Utah. Dr. Kopeck is an internationally recognized authority

on hydrogels and related polymers for drug delivery and biocompatibility.

Dr. Larry Kricka - Director of the General Chemistry Lab and Professor of

Pathology and Laboratory Medicine at the University of Pennsylvania.

Kricka is an internationally recognized for his work on applying both bioluminescence and chemiluminescence to clinical chemistry.

Dr. Russell Stewart - Assistant Professor of Bioengineering at the University of Utah. Dr. Stewart is an expert on recombinant techniques for

the synthesis and study of luciferases and motor proteins.

8. Consortium Arrangements No subcontracts are budgeted for this Phase II

work.

- 9. Literature Cited
- 1. S. Segal and G.T. Berry, "Disorders of Galactose Metabolism" in The Metabolic and Molecular Bases of Inherited Disease Vol. 1 7th ed., C.R.

Scriver, et al. eds., McGraw-Hill (1995) 967-1000.

2. S. Segal, "Galactosemia Today: The Enigma and the Challenge", J.Inher.

Metab. Dis. 21 (1998) 455-471.

3. N.R.M. Buist, M.D., written communication of March 26, 1998 and conversation of March 17, 1999.

```
4. J.H. Walters, M.D., Royal Manchester Children's Hospital,
Manchester,
England, conversation of March 22, 1999 and J.H. Walters, et al.,
"Recommendations for the Management of Galactosemia", Arch. Dis. Child
(1999) 93-96.
5. Claire Leonard, M.D., Associate Professor of Pediatrics and
Director of
the Metabolic Program, Department of Pediatrics, University of Utah
of Medicine, Salt Lake City, Utah, conversation of March 16, 1999.
6. G. Berry, M.D., Children's Hospital of Philadelphia, conversation
of
April 5, 1999.
7. E. Beutler, "Galactosemia: Screening and Diagnosis", Clin.
Biochem. 24
(1991) 293-300.
8. T. Podskarbi and W.P. Bieger, "Neonatal Screening and Differential
Diagnosis of
     Galactosemia", Clin. Lab. 41 (1995) 843-847.
    K. Widhalm, et al., "Diet Does Not Ensure Normal Development in
Galactosemia", J. Amer.
     Coll. Nut. 16 (1997) 204-208.
10. D.D. Waggoner, N.R.M.Buist, and G.N. Donnell, "Long-Term Prognosis
in
Galactosemia:
      Results of a Survey of 350 Cases", J. Inher. Metab. Dis. 13
(1990)
802-818.
11. F.R. Manis, et al., "Cognitive Functioning in Patients with
Classical
Galactosemia, ....",
       J. Inh. Met. Dis. 20 (1997) 549-555.
12. G.T. Berry, et al., "Quantitative Assessment of Whole Body
Galactose
Metabolism in
      Galactosemic Patients", Eur. J. Pediatr. 156-S1 (1997) S43-S49.
13. C. Jakobs, S. Schweitzer and B. Dorland, "Galactitol in
Galactosemia",
Eur. J. Pediatr.,
       154-S2 (1995) S50-S52.
14. R. Gitzelmann, R.G. Hansen, and B. Steinmann, "Biogenesis of
Galactose:
A Possible
      Mechanism of Self-Intoxication in Galactosemia" in F.A. Hommes
C.J. Van den Berg,
      eds., Normal and Pathological Development of Energy Metabolism,
Academic Press
      (1975) 25-38.
```

15. J.T. Allen, J.B. Holton, A.C. Lennox and I.C. Hodges, "Early Mornina Urine Galactitol Levels in Relation to Galactose Intake: A Possible Method of Monitoring the Diet in Galactokinase Deficiency", J. Inher. Metab. Dis. 11-S2 (1988) 243-245. 16. G.T. Berry, et al., "The Effect of Dietary Fruits and Vegetables Urinary Galactitol Excretion in Galactose-1-phosphate Uridyltransferase Deficiency", J. Inher. Metab. Dis. 16 (1993) 91-100. 17. T.A. Tedesco and K.L. Miller, "Galactosemia: Alterations in Sulfate Metabolism Secondary to Galactose-1-Phosphate Uridyltransferase Deficiency", Science 205 (1979) 1395–1397. 18. P. Cuatrecasas and S. Segal, "Galactose Conversion of D-Xylulose: Alternative Route of Galactose Metabolism" Science 153 (1966) 549-551. 19. R.J. Allen, "Window in Clouds Over Galactosemia", The Lancet 345 (1995)128. 20. U. Wendel and U. Langenbeck, "Towards Self-Monitoring and Self-Treatment of PKU: A Way to Better Diet Compliance", Eur. J. Ped. 155-S1 (1996) 21. U. Langenbeck and U. Wendel, "Kinetic Analysis Phenylalanine Disposal...", Int. Ped. 12 12 (1997) 19-22. 22. Parents of Galactosemic Children, Inc., Newsletter (www.galactosemia.org). 23. K.D. Jones, "Troubleshooting Protein Binding in Nitrocellulose Membranes", IVD Tech. 5 (1999) 32-41.24. J.D. Andrade, ed. Surface and Interfacial Aspects of Biomedical Polymers Vol.2 - Protein Adsorption, Plenum Press (1985). 25. H. Carlsson, et al., "Use of Genetically Prepared Enzyme Conjugates in Lactose and Galactose Analysis", Anal. Biochem. 218 (1994) 278-283. 26. P.G. Arthur, J.C. Kent and P.E. Hartmann, "Microanalysis of the Metabolic Intermediates of

Lactose Synthesis in Human Milk and Plasma Using Bioluminescent Methods", Anal. Biochem. 176 (1989) 449-456. 27. J.-Y. Eu, C.-Y. Wang, and J. Andrade, "Homogeneous Bioluminescence Assav for Galactosuria: Interference and Kinetic Analysis" Anal. Biochem. (1999)in press and Included as Appendix 1. 28. D.J. Min, J.D. Andrade, and R.J. Stewart, "Specific Immobilization of In Vivo Biotinylated Bacterial Luciferase and FMN:NAD(P)H Oxidoreductase", Anal. Biochem. (1999) in press. 29. C.-Y. Wang, S. Hitz, J.D. Andrade and R.J. Stewart, "Specific Immobilization of Firefly Luciferase Through a Biotin Carboxyl Carrier Protein Domain", Anal. Biochem. 246 (1997) 133-139.30. S. Brolin and G. Wettermark, Bioluminescence Analysis, VCH (1992) 31. L.J. Kricka, "Chemiluminescence and Bioluminescence", Anal. Chem., 67 (1995) 499R. 32. A. Lundin, "Techniques Related to Accuracy of Luminometric ATP Measurements", in A Rapid Guide to Industrial Use of ATP-Luminescence in Rapid Microbiology, Cara Technology (1997) 55-62. 33. J.S. Gulbinsky, W.W. Cleland, "Kinetic Studies of E. Coli Galactokinase", Biochem., 7 (1968) 34. K.G. Petry and J.K.V. Reichardt, "...Human Galactose Metabolism...", Trends in Genetics, 14 (1998) 98-102. 35. R. Van Wagenen, "CCD-Based Analyzer for Multi-Channel Biosensor" NIH Phase I SBIR, Grant#: 1R43RR13087-01. 36. R. Van Wagenen, "Creatinine Biosensor for Renal Transplant Monitoring", NIH Phase I SBIR, Grant#: 1R43DK55426-01. 37. J.-Y. Eu, Ph.D. Dissertation, University of Utah (1999) preparation. 38. R. Davies, Ph.D. Dissertation, University of Utah (1999) in

preparation.

39. J.F. Carpenter, S.J. Prestrelski, and T. Arakwa, "Separation of Freezing— and Drying—

Induced Denaturation of Lyophilized Proteins Using Stress-Specific

Stabilization, Arch.

Biochem. Biophys. 303 (1993) 456-464.

40. J.H. Crowe, L.M. Crowe, and J.F. Carpenter, "Preserving Dry Biomaterials: The Water

Replacement Hypothesis, Part 2", Biopharm. (May 1993) 40-43.

41. C.O. Fagain, "Lyophilization of Proteins" In Methods in Molecular Biology, Vol. 59, S.

Doonan, ed., Humana Press.

42. H.N. Fernley, "Mammalian Alkaline Phosphatases" in The Enzymes, 3rd

Edition, P.D. Boyer

ed., 4 Academic Press, p. 417.

43. F. Diepenbrock, et al., "Colorimetric Determination of Galactose and

Galactose-1-Phosphate

from Dried Blood", Clin. Biochem. 25 (1992) 37-39.

44. H. Misuma, et al., "Galactose and Galactose-1-Phosphate Spot Test for

Galactosemia

Screening", Clinica Chimica Acta 111 (1981) 27-32.