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ABSTRACT

About 100 million Americans visit science centers each year to participate in experiential sci-
ence and technology activities. There is great potential for diabetes awareness and education
via the several hundreds of science centers in the United States. Most science centers tend to
avoid medically related topics in part because of the difficulty in meeting the interactive goals
of science center activities. The Utah Science Center (USC) is addressing these difficulties by
creating environments for personal interactive activities in a range of medically related top-
ics, including diabetes. The USC will open in early 2005 in Salt Lake City. The design of 
diabetes activities for the USC is reviewed: (1) activities (aims, description, stages of devel-
opment, and partnerships); (2) specific stage I activities (body mass index, “feeling” hypo-
glycemia, and urine chemistry); and (3) conclusion.

61

INTRODUCTION

DIABETES HAS CLEARLY become prevalent 
in the United States. There are approxi-

mately six individuals with prediabetes, four
diagnosed with diabetes, and two with undi-
agnosed diabetes among every 100 Americans.
Moreover, there is a 6% yearly increase in dia-
betes incidence in the United States. The cost
of treating diabetes and its complications is
over $130 billion per year in the United States.1
Public awareness of diabetes is needed to en-
courage prevention, create a supportive atmo-
sphere for disease management, and hopefully
counter the rising expenditures for diabetes
care.

The Utah Science Center (USC) will be a new
center for health awareness and health educa-
tion in an objective, informal, non-threatening,

open, and free environment. The USC sees it-
self as the first “third generation” science cen-
ter2 in that it will take visitor interactivity to
entirely new levels. It has three main themes:
(1) You are the experiment; where visitors will
have the opportunity to make measurements
of their own physiologic parameters; (2) En-
ergy; from solar energy to personal bioener-
getics, including nutrition, exercise, obesity,
and diabetes; and (3) Home—Planet Earth and
its resources, environments, and changes. In
addition, the USC will likely become a center
for networking communications, including an
extensive database, which will provide unique
opportunities for researchers, health care pro-
viders, and patients. The USC will open in early
2005 in Salt Lake City, and expects about
400,000 visitors a year (http://www.utah-
sciencecenter.org).
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ACTIVITIES

Our objective is to help develop more aware,
educated, empowered citizens, particularly in
relation to health awareness and education. Di-
abetes risk factors, prevention and control, the
seriousness of having diabetes, and the pro-
motion and support of diabetes self-manage-
ment will all be emphasized. Given the growth
in the incidence of type II diabetes and the na-
tional concern with diabetes education and
awareness, we are developing a cluster of in-
teractive exhibits related to diabetes. We are in
the design, prototype, and testing phase
(2003–2004). Prototype exhibits will be tested
in different public settings.

We presented, discussed, and tested two pro-
totypes at the Diabetes Science and Technology
Conference, held in San Francisco, CA, in No-
vember 2003.3

Activities in the USC will consist of main
floor interactive exhibits; main floor demon-
stration carts and small “theatre” demonstra-
tions; and special supervised activities in base-
ment laboratories, shops, and classrooms. In
addition, the USC will also develop a range of
online activities for its website.

Stage I activities (2005)

• Body measurements: weight, height, heart rate,
and blood pressure; compare personal data
with general public data, with an emphasis
on populations, statistics, and distributions

• “Feeling” hypoglycemia: activities that enable
visitors to “feel” the physical effects of being
hypoglycemic

• Simulation: games and related computer-
based activities, which incorporate multiple
parameters, blood glucose levels, insulin
dosing, food intake, and physical activity in
the management of diabetes

• Diabetes chemistry cart: demonstrations of
simulated blood and urine chemistry mea-
surements

Stage II activities (2006)

• Bioenergetics: nutrition, food as fuel, exercise,
conservation of mass and energy, and en-
ergy utilization—all personal and highly in-
teractive

• Smart toilet: interactive toilet measuring the
user’s urine glucose, pH, and density via vi-
sual colorimetric and fluorescent qualitative
assays

• Sensations: what you can and cannot sense
with your fingers—the role of peripheral
nerve issues in chronic diabetes

• Games: where do you stand among the pub-
lic in terms of diabetes awareness?

Stage III activities (2007)

• Modern noninvasive glucose measurement tech-
nologies

• Diabetes and the eye: vision issues associated
with chronic diabetes

• Diabetes story room: watch and listen to the
personal stories of individuals with diabetes

• Database: a collection of personal measure-
ments and other input from the interactive
exhibits—a potential resource for researchers,
health providers, and students in the fields
of diabetes prevention and therapy

Partnerships

We are establishing partnerships with dia-
betes-related organizations to deliver addi-
tional activities by their professionals. Partners
will regularly operate screening stations and
related activities. USC laboratories and class-
rooms will be used by health partners to pres-
ent demonstrations of new methods and tech-
nologies for the management of diabetes.

SPECIFIC STAGE I ACTIVITIES (FIG. 1)

• Pseudo-body mass index. The visitor steps on
a force plate, facing a height detector. Each
visitor’s mass and height are obtained in
units of kilograms and meters, respec-
tively. Measurements for every visitor 
are voluntarily entered into a software 
program, which presents a histogram 
of population measurements, generating
pseudo-body mass index measures (an ap-
proximation to the formula used in calcu-
lating the body mass index: weight in kilo-
grams divided by squared height in
meters), and the data are correlated with
diabetes risk factors. The histograms and
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other information are dynamically pro-
jected for the visitors to view.

• “Feeling” hypoglycemia. The visitor “enters”
the world of a patient with diabetes by “feel-
ing” certain hypoglycemic symptoms, in-
cluding cold, tremors, sweating, dizziness,
vision blurriness, mental confusion, and

sense of balance irregularities. Although it is
chemistry that is largely responsible for
these feelings in individuals with diabetes,
visitors without diabetes will “feel” hypo-
glycemia by means of changes in their phys-
ical environment. The visitor will enter the
first segment of the activity, where he will
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FIG. 1. Schematic presentation of stage I activities. Height and weight, “feeling” hypoglycemia, simulations, and pub-
lic screening for diabetes are distributed over four zones: personal data, experience of persons with diabetes, aware-
ness, and partnerships, respectively. In addition, there will be a diabetes chemistry demonstration cart.



feel cold, start to sweat, and probably shake.
This will be achieved by generating cold and
humid air, along with spraying drops of wa-
ter on the visitor. The next zone will involve
rotation and vibration of the walls and floor
to simulate dizziness. Balance irregularities
are felt and measured by standing on a me-
chanical table. Looking at hazy mirrors,
lenses, and glass plates simulates vision
blurriness. Mental confusion is encountered
when the visitor experiences unfamiliar
sounds and visions that he cannot interpret.
Finally, the visitor enters a dark room, where
he recognizes flashes and audio alarms
warning him that he is reaching the stage of
hypoglycemic coma.

• Diabetes chemistry. Cart-based demonstrations
include measurement of blood glucose and of
urine ketones and other urine analytes using
a GlucoWatch® (Cygnus, Inc., Redwood City,
CA) and urine dipsticks, respectively. Urine
will provide a medium to show food and
drug metabolism in the body. The demon-
stration will also allow the exploration of
urine drug screening, including the technol-
ogy related to drug screening in competitive
sports. Specific urine metabolites will be in-
cluded and examined in test tubes, contain-
ing artificial urine. Charts of urine color in
various physiological conditions will also be
demonstrated to the visitor.

CONCLUSION

The purpose of this brief paper is to inform
the reader of the potential for enhancing the
public’s awareness and education regarding di-
abetes, using science centers and museums
available throughout the country. We also so-
licit your feedback on the design of activities,
exhibits, and demonstrations. We would like to
exchange experience and form links with other
science centers and health-related institutions.
Your participation and input are especially
needed in the following topics:

1. What noninvasive blood glucose measure-
ment technologies are likely to be available

by 2007, and which one of them would be
most applicable in a public science center
environment?

2. What activities could most effectively dem-
onstrate the links between lifestyle and dia-
betes?

3. Are there existing diabetes activities similar
to what we are developing?

4. What diabetes-related activities should be
presented to elementary and high school
children?

5. What other diabetes issues or concerns
should be included?

6. Are you interested in being a partner?

Send your input to Joseph Andrade or Youssef
Al-sheikh at the addresses given below.

REFERENCES

1. American Diabetes Association: National Diabetes Fact
Sheet 2000. http://www.diabetes.org

2. Association of Science-Technology Centers (ASTC).
http://www.astc.org

3. Al-Sheikh YT, Hardman R, Andrade JD: Public ad-
ventures in diabetes—personal interactivity in a mod-
ern science center. Presented at the 3rd Diabetes 
Science and Technology Meeting, San Francisco, No-
vember 6–8, 2003. http://www.diabetestechnology.
org

Address reprint requests to:
Youssef T. Al-sheikh, B.S.

Department of Bioengineering
University of Utah

Merrill Engineering Building
50 South Central Campus Drive, Room 2480

Salt Lake City, UT 84112-9202

E-mail: yta1@utah.edu

Joseph D. Andrade, Ph.D.
Department of Bioengineering

University of Utah
Utah Science Center

c/o 949 Millcreek Way
Salt Lake City, UT 84106

E-mail: joeandrade@uofu.net
http://www.utahsciencecenter.org

AL-SHEIKH ET AL.64



 
 

1 
 

Review of Designing an Information Processing Ware for a Diabetic Chip 

“diabetiChip”  

 

Youssef T. AL-sheikh, Ph.D., M.S., C(ASCP),1,2,3,4 Jared Millington, B.E.,2 

Joseph D. Andrade, Ph.D.,2 Daniel Bartholomeuz, Ph.D.,2  

Kang Zhang, M.D., Ph.D.4,5 

 

Author Affiliations:  

1Department of Biomedical Informatics, School of Medicine, University of Utah, 

26 South 2000 East Suite 5700 HSEB, Salt Lake City, UT 84112, USA 

24M Lab, Department of Bioengineering, School of Engineering, University of 

Utah, 50 S. Central Campus Dr. RM 2480 MEB, Salt Lake City, UT  84112, USA 

3ManyOne Networks Salt Lake City Office, 28 South 400 East, Salt Lake City, 

UT 84111, USA 

4Moran Eye Center, 65 North Medical Drive, Salt Lake City, UT 84132, USA 

5Department of Ophthalmology and Visual Sciences, School of Medicine, 

University of Utah, 65 North Medical Drive, Salt Lake City, UT 84132, USA 

 

Abbreviations: (4M Lab) laboratory for monitoring, measurement, and 

management of the metabolome; (ChemChip) clinical chemistry chip; 

(diabetiChip) diabetic chip; (ATP) adenosine triphosphate; (NAD) nicotinamide 

adenine dinucleotide; (NADH) reduced nicotinamide adenine dinucleotide; 

(NADPH) phosphorylated reduced nicotinamide adenine dinucleotide; (FFL) 



 
 

2 
 

firefly luciferase; (ChipWare) chip ware; (SampleWare) sample ware; 

(ChemWare) chemistry ware; (LightWare) light detection ware; (InfoWare) 

information processing ware; (MetaWare) metabolic assays ware; (DataWare) 

data analysis ware; (VisWare) data visualization ware; (PMT) photomultiplier 

tube; (ChemCD) clinical chemistry CD; (CoA) coenzyme A; (CO2) carbon 

dioxide; (FAD) flavin adenine dinucleotide; (FADH2) reduced flavin adenine 

dinucleotide; (FMN) flavin mononucleotide; (FMNH2) reduced flavin 

mononucleotide; (RLU) relative light units 

 

Key Words: bioluminescence, light emission, assay calibration, simulation, 

central nodes of metabolism, visual display, GlucoFacesTM, Diabetes Info Portal, 

Diabetic Chip 

 

Corresponding Author: Youssef T. AL-sheikh, Ph.D., M.S., C(ASCP), 

Department of Biomedical Informatics, School of Medicine, University of Utah, 

26 South 2000 East Suite 5700 HSEB, Salt Lake City, UT 84112, USA, Phone 

(801) 783-0026, Fax (801) 581-4297, Email YTAL@utah.edu 

 

Acknowledgments: We thank the many individuals who have contributed to the 

DiabetiChip project. This work was supported by NIH Grant RR17329 (Multi-

Analyte Micro-Devices for Biomedical Applications). 

 

 



 
 

3 
 

 Abstract 

 

Miniaturization of clinical chemistry analyzers can empower research conducted 

to better understand, diagnose, manage, and cure diseases such as diabetes. For 

the last decade, we have been working on the design and development of 

miniaturized clinical chemistry devices (ChemChips), including the Diabetic Chip 

(diabetiChip), which measure a small array of analytes, are small, portable, fast, 

easy-to-operate, and inexpensive. The chosen analytical method for the 

diabetiChip uses bioluminescence, which is highly sensitive and specific, and is 

based on photon counting and specific enzymatic reactions. Bioluminescent 

reactions were intentionally chosen for analyzing metabolic reactions due to them 

utilizing some of the central nodes of metabolism, such as adenosine triphosphate 

(ATP). The analytical processes of the diabetiChip are carried out within a chip 

ware by four operational wares: sample ware; chemistry ware; light ware; and 

information processing ware “InfoWare” (further divided into metabolic reactions 

ware, data analysis ware, and data visualization ware). InfoWare is the focus of 

this paper; we show the feasibility of using a set of kinase-utilized enzymatic 

reactions of a firefly bioluminescence-coupled glucose assay in designing a 

diabetic chip. We also present the concept of GlucoFacesTM in visualizing 

measurements of the diabetiChip. 
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Introduction 

 

Miniaturization of clinical chemistry analyzers can empower ongoing research in 

better understanding, diagnosing, managing, preventing, and curing diseases such 

as diabetes. For the last decade, we have been working on the design and 

development of miniaturized multianalytical clinical chemistry devices 

(ChemChips), including the Diabetic Chip (diabetiChip), that measure a small 

array of analytes, are small, portable, fast, easy-to-operate, and inexpensive. The 

analytical principle of the diabetiChip is the measurement of the number of 

photons emitted from the coupling of an enzymatic reaction specific to the 

metabolite of concern with a bioluminescent chemical reaction. Bioluminescent 

reactions were intentionally chosen for analyzing metabolic reactions due to them 

utilizing some of the central nodes of metabolism, such as adenosine triphosphate 

(ATP). Also, due to the high sensitivity and specificity of bioluminescent 

reactions, the diabetiChip can ‘cheaply’ analyze multiple metabolites from a small 

sample volume in a relatively short time (few minutes).  

 

Analytical processes of the diabetiChip are carried out within a micro-scale, 

multi-well chip (ChipWare) by four operational wares (Figure 1): sample 

processing ware (SampleWare) for processing and transporting the sample; 

chemistry ware (ChemWare), which constitutes the various chemical assays, 

deposited in specific analytical wells; light detection ware (LightWare) for 

detecting and reporting photon counts; and information processing ware 
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(InfoWare), which correlates the signal to metabolite concentration, performs 

calibration, estimates analytical error, and displays the relevant information in 

simple visual patterns.  

 

ChipWare, SampleWare, and LightWare 

Chemistry chips can be manufactured in large quantities with relatively low cost. 

A variety of microfabrication techniques can be used to build arrays of detection 

wells, where each well contains an independent bioluminescence-based analytical 

assay.1,2 Each unique assay is deposited and stabilized in small quantities in 

individual detection wells. Commercially available silicon photodiodes, avalanche 

photodiodes, and photomultiplier tube (PMT) arrays designed for low-light 

detection are ideal for producing small size-detectors to simultaneously measure 

signals from multiple analytical channels. Our group has focused on PMT-based 

detectors during chip development processes. We also examined various sample 

processing methods, such as top-loading, through-flow, hydrogel, plasma 

separation membrane, and microfluidic channels. However, we developed a total 

chemistry micro-analytical system (ChemCD), which integrates all wares.3 The 

general concept of the ChemCD is to distribute the biological sample from a 

single sample acquisition chamber to multiple sample-metering chambers via a 

distribution channel. Each sample-metering chamber would have a passive valve 

from which the metered sample volume would travel through burst valves and 

mixing channels, and enter the analytical wells. Since centrifugal pumping can 

only move the fluid radially outward, the sample chamber has to be facing the 
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CD’s center, and the distribution channel has to spiral outward. Basic design and 

an advanced design (involving high speed blood separation unit) are illustrated in 

Figures 2 and 3, respectively. ChemCD can empower the clinical chemistry chip 

in measuring analyte concentrations in different biological samples and beyond 

the analytical detectable limit via the automatic filtering and diluting of biological 

samples. 

 

ChemWare 

A reaction that produces photons has many advantages: the problems associated 

with color perception or wavelength separation are eliminated, as in the case of 

reflectance colorimetry; no light source is needed, as in the case of fluorescence 

spectroscopy; no usage of electrodes susceptible to contamination, as in the case 

of electrochemical analyzers; and less sample volume, a major concern for the 

patient. Bioluminescence is light produced by compounds undergoing specific 

oxidation reactions catalyzed by enzymes. Bioluminescence-based measurements 

are efficient for analyzing metabolites in the micro to sub-microMolar 

concentration range due to its high sensitivity (generally 100 to 1,000 times more 

sensitive than common spectroscopic or colorimetric methods). Bioluminescence 

occurs naturally in some organisms, such as firefly, bacteria, fish, and fungi. 

Generally, bioluminescent reactions employ an enzyme called “luciferase,” which 

facilitates the oxidation of an energetic substrate, called “luciferin,” into an 

excited state, where it emits a photon. There are many different luciferases and 

luciferins with at least 30 different known bioluminescent reactions in nature. The 
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yellow-green (580 nm wavelength) bioluminescence of fireflies (FFL) is based on 

the enzyme-catalyzed oxidation of firefly luciferin utilizing adenosine 

triphosphate (ATP) as a highly specific co-reactant (key light inducer). 

Interactions between the reactants and ATP result in light emission. Moreover, a 

calibration curve can be obtained for various ATP initial concentrations or any 

metabolite coupled to ATP via an enzymatic reaction.4,5 

 

InfoWare 

InfoWare refers to mathematical models and simulation tools for analyzing 

metabolic networks, including calibration, data analysis, estimation of analytical 

error, and simple means of presenting multianalytical data in simple visual 

patterns that are easily interpretable.6-8 InfoWare is further divided into three 

complementary units:  

1. MetaWare: Analytes appropriate to diagnosing or managing a metabolic 

disorder (e.g., diabetes), organ dysfunction (e.g., kidney dysfunction), or 

physiological condition (e.g., lactation, aging, stress, starvation) are selected. 

Next, biochemical pathways are explored for reaction(s) utilizing each 

metabolite of interest and can be coupled to one of the bioluminescence 

analytical platforms. In general, any reaction utilizing a kinase or a 

dehydrogenase enzyme could be used to couple an analyte to the ATP or 

NADH/NADPH “NAD(P)H” platform, respectively. If more than one reaction 

is available, then the most suitable reaction is chosen based on enzyme 

availability and assay cost. 
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2. DataWare: First, configured assays are simulated to examine assay feasibility 

and optimal physical and chemical parameters such as medium acidity and 

enzyme concentration. Also, mathematical and statistical methods for design 

of experiments are used to minimize number of required experiments in assay 

validation. Then, experimental data and calibration curves are analyzed for 

optimal assay calibration. Finally, a general analytical calibration curve that 

encompasses the effects of other metabolites is created with the aim of 

minimizing the number of experiments required to validate and implement 

assays of related metabolites onboard the chip. 

3. VisWare: Metabolic networking features, mentioned above, are further 

utilized to visually represent data from a collection of analyzed metabolites 

via simple, but significantly informative, visual patterns. These visual patterns 

can ease interpretation and provide new insights for understanding disease 

etiology and pathophysiology.  

 

MetaWare 

 

Metabolism refers to the highly integrated network of chemical reactions that 

carries out the cellular processes of extracting and controlling energy from the 

environment and the synthesis of biochemicals and macromolecules. More than a 

thousand chemical reactions take place in Escherichia coli (a single cell-

organism).9-17 Though this array of reactions may seem overwhelming at first 

glance, its coherent design and its many common motifs show metabolism to be 
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much simpler. In different words, the number of reactions in metabolism is large 

but the number of kinds of reactions is relatively small, and the mechanisms of 

these reactions are usually simple. Furthermore, a group of about a hundred 

molecules plays a central role in the metabolism of all forms of life; these are 

often called the central nodes of metabolism.10 Utilizing the motifs and central 

nodes to simulate and analyze the metabolic mesh may hold the key to uncover or 

better understand disease etiology, improve disease treatment or management, or 

prevent disease.  

 

Most interchanges of activated groups in metabolism are accomplished by a small 

set of carriers, some water-soluble vitamins, and some key bioenergetic molecules 

that collectively form the central nodes of metabolism: ATP (phosphoryl carrier); 

NADH, NADPH, FADH2, and FMNH2 (electron carriers); CoA and lipoamide 

(acyl carriers); Thiamine pyrophosphate (aldehyde carrier); Biotin (CO2 carrier); 

Tetrahydrofolate (1-carbon units-carrier); Adenosylmethionine (methyl carrier); 

Cytidine diphosphate diacylglycerol (phosphatidate carrier); Nucleoside 

triphosphates (nucleotides carriers); Ascorbate, the ionized form of vitamin C (a 

reducing agent); Vitamin B2 (a precursor of FAD and FMN); Niacin (a precursor 

of NAD); Pantothenate (a component of CoA); and Glucose (a universal energy 

currency) along with the carrier uridine diphosphate glucose. 

 

Human disease phenotypes are controlled not only by genes but also by self-

organizing networks; including metabolic, regulatory, and signal transduction 
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networks, which all display system dynamics. These networks can be divided 

further into sub-networks. For example, the metabolic network can be viewed as 

two complementary networks; the metabolite network and the enzyme network. 

When perturbed, these networks alter their output of matter and energy, and can 

produce either a pathological or a normal phenotype; depending on the 

environmental context. Study of the dynamics of these networks by approaches 

such as metabolic control analysis may provide new insights into the pathogenesis 

and treatment of complex diseases such as diabetes.18-22   

 

Most diseases have metabolic origins; which necessitates analyzing certain 

metabolites to diagnose, manage, or prevent disease.16,23-65 Moreover, increasing 

the number of analyzed metabolites is needed to better understand the 

biochemical basis of disease.66-81 This necessitates simultaneous analyses of 

multiple analytes and requires an analytical methodology capable of performing 

such analyses at relatively low cost.82-84 Bioluminescence-based analyses can be 

coupled to a large number of metabolic reactions.84 The high sensitivity of 

bioluminescence-based analyses significantly reduces the needed volumes of 

sample and chemical reagents needed, and thus reduces cost.84-87 

 

Since the central metabolite ATP is a key analyte in the FFL bioluminescent 

platform, a large number of metabolites can be measured by coupling a 

metabolite-specific reaction that also involves ATP (usually enzymatic reactions 

utilizing kinase) to the FFL bioluminescence platform. In such coupled reactions, 
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light emission will also depend on the type of the kinase-utilized enzymatic 

reaction; whether produces ATP or competes for ATP. In any case (whether ATP 

is consumed or produced), the amount of emitted light (or photons) can be 

correlated to the metabolite concentration via generating a calibration curve for 

the coupled assay.4,5   

 

Glucose Assay 

Diabetes is a complex metabolic syndrome that is divided further in multiple sub-

disease classes. In general, diabetes is characterized by absolute insulin deficiency 

in the case of type I diabetes, or partial insulin deficiency or insulin resistance in 

the case of type II diabetes. Insulin can be described as the shuttle that performs 

and regulates glucose transport into cells. When insulin is deficient, glucose 

cannot be well utilized. Knowing that glucose is a universal currency for energy 

exchange within the human body makes diabetes an energy disease affecting 

functions of the whole body. 88-103 Thus, tight control of blood glucose levels close 

to normoglycemia is necessary for reducing the frequency of diabetes short-term 

complications (hypoglycemia and hyperglycemia) and delaying long-term 

complications. Therefore, developing a glucose assay is the cornerstone for the 

diabetiChip. Establishing the glucose analytical assay began with searching the 

metabolic pathways for enzymatic reaction(s) utilizing glucose, which can be 

coupled to the FFL bioluminescence platform via ATP. Then, preliminary assay 

protocols were obtained from the literature.104-116 
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DataWare 

 

FFL Bioluminescence-Coupled Glucose Analytical Assay (Dry) 

We refer to the simulation of FFL bioluminescent reaction (ATP assay) and FFL 

bioluminescence-kinase coupled glucose reactions (glucose assay) of the 

diabetiChip as the dray assay. The main goals of simulation are examining assay 

feasibility and estimating optimal concentrations for reagents. FFL 

bioluminescence reaction requires firefly luciferase (FFL), luciferin (LH2), 

oxygen (O2), and ATP in the presence of magnesium ions (Mg2+). ATP utilizes 

Mg2+ and binds rapidly and reversibly on LH2 to form the complex luciferase-

luciferyl-adenylate “FFL-LH2-AMP” (steps 1-2 in Figure 4). Molecular oxygen 

oxidizes the complex to produce oxyluciferin (Loxy), AMP, carbon dioxide (CO2), 

and light (step 6 in Figure 4). The light emitting reaction is limited by three steps; 

the first two occur before oxidation: 

1. A proton abstraction from luciferin (step 4 in Figure 4). 

2. A conformational change of luciferase (step 5 in Figure 4). 

3. Dissociation of the luciferase-oxyluciferin complex “FFL-Loxy” (step 7 in 

Figure 4).4-5,7 

 

After a rapid mixing of the reaction’s reagents for about 5 milliseconds (ms), a lag 

phase of 25 ms occurs before light is emitted (Figure 5). The two limiting steps 

preceding oxidation, mentioned above, are responsible for this delay. Maximum 

intensity of the emitted light (Imax); which is proportional to the ATP 
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concentration for values lower than 1 micro-Molar, is reached in less than 1 

second, but the time necessary to reach half of this value (Imax/2) is constant 

(about 100 ms) and independent of the ATP concentration. A steady-state light 

signal is obtained only for ATP concentrations lower than 10 nanoMolar. As the 

ATP concentration is increased beyond this value, the peak light intensity 

increases. Light’s decay rate also increases due to the noncompetitive inhibition 

of luciferase by oxyluciferin; the concentration of which increases when ATP 

concentration is raised. A nonsteady state kinetics model proposed by Deluca and 

McElroy, and modified by Gandelman, is used in simulating the ATP assay with 

Gepasi Biochemical Simulation (Figure 6, Table 1).4-5,7,117 We had prior 

knowledge of the FFL bioluminescent assay, which is widely used in different 

analytical fields. Thus, the aim of simulation was verification rather than proving. 

Based on simulation, optimal concentrations for ATP, luciferin, and firefly 

luciferase (FFL) were about 650, 1000-3000, and 400-500 µM (Figure 7).  

 

The enzymatic reactions involving glucose utilize the conversion of glucose and 

ATP to glucose-6-phosphate and ADP via the glucose kinase enzyme (Figure 8). 

In Figure 9, we present the general kinetic model “YTAL-sheikh’s Kinase-Kinetic 

Model” for the enzymatic reactions that utilize the conversion of an analyte 

(denoted by i) and ATP to another analyte (denoted by j) and ADP via a kinase 

enzyme (denoted by ij). These kinase-utilized reactions can be coupled with the 

FFL bioluminescent reaction’s model, discussed above, in simulating the 

bioluminescence-kinase coupled reactions. 
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FFL Bioluminescence-Coupled Glucose Analytical Assay (Wet) 

ATP and glucose assays were examined experimentally; used assay protocols are 

listed in Table 2. In each experiment, five assays for each analyte concentration 

were run for 60 seconds using a TD 20/20 Luminometer. Data points of the ATP 

and glucose assays were normalized by dividing each data point by the maximal 

value of the data set. Assays data points at each second were averaged. Each 

experiment was repeated three times. We present here results of one experiment 

performed to validate each of the ATP and glucose assays (Figures 10, 11, and 

12). 

 

Assay Calibration 

A measurement is a set of operations performed to determine the value of a 

quantity, such as the concentration of blood glucose. Calibration is a comparative 

measurement aimed toward comparing an analyte concentration from a patient 

sample with a calibrant that has a known value for the same analyte. Calibrants 

are either directly prepared from a pure substance via simple procedures or 

indirectly via a series of comparative procedures when the substance is impure.  

Thus, the measurement procedure on the patient sample constitutes the last step in 

a series of comparisons, in which each comparative step adds to the uncertainty of 

the final result.  
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Analyte concentration is usually correlated to the level of signal detected by a 

clinical laboratory analyzer; the signal is scaled by calibration parameters for 

conversion into concentration units. In the case of POC devices, such as the 

glucometer, each batch of testing strips has a calibration code that adjusts the 

scaling parameters to account for variation among batches. However, calibration 

codes do not account for variation among testing strips within a batch, changes 

due to storage conditions, or changes in the sensor’s accuracy. Measuring the 

signals from analytical calibrants (or standards) can account for these variations.  

  

Onboard calibration engages treatment of the unknown, unaccounted for random 

interferences attributable to the patient sample (or biomatrix effects), validation of 

the chip analytical performance, and estimation of total analytical error (TAE). 

Onboard calibration incorporates a number of analytical standards to optimize 

calibration constants. The more calibration constants in the mathematical equation 

describing the calibration curve(s), the more standards are required. For the 

purpose of onboard calibration, we make use of one of the advantages of 

microarrays; availability of a large number of analytical wells. Also, we make use 

of microfluidics to treat and distribute biological samples to certain wells, and not 

to distribute them to other wells. 

  

There are various means for assay calibration such as internal standards, standard 

additions, and spikes. However, via utilizing multianalytical arrays and 

microfluidic systems (such as the ones discussed above), we are able to employ 



 
 

16 
 

the analytical calibration technique “standard additions” for onboard calibration. 

In addition to the blank, standards with known analyte concentration are mixed 

with patient sample (Figure 11). By this, most of the interferences and systematic 

errors, such as biomatrix effects, inter-batch variability, and signal to 

concentration correlations, are being accounted for. 

  

Different methods can be used for generating calibration curves; integrating total 

or partial area under the curve, slope determination, and end-point value (Figure 

13). An off-board calibration curve for the glucose assay, discussed above, was 

generated via integrating the area under the curve of normalized relative light 

units (RLUs) (Figure 14). The calibration curve was fitted using the Matlab-

Curve Fitting Toolbox118 (Figures 15, Tables 3).  

  

We have previously studied and tested onboard calibration on the ATP assay. We 

present here results of this study to show the feasibility of the clinical chemistry 

chip’s onboard calibration methodology: ATP assay was deposited within wells of 

chips from different batches, light emission was detected using a CCD camera; 

images were processed using the software program ImageJ, and data were 

analyzed using Microsoft Excel and Matlab, and calibration curves were 

generated. Tested detectable ATP assay’s linear range was 1-100 µM. Average 

concentration measurement error was 19%.  
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No matter what level of success we achieve in accounting for many of the sources 

of systematic variation, the main challenge we still face is the end-user error. If 

the end-user has difficulty in following the operational instructions of the device, 

the user may obtain inaccurate results even if the analytical assays and signal 

detector were optimal. Likewise, if the end-user has difficulty in interpreting the 

results, he/she will not be capable of making use of the results in disease 

diagnosis or management. Therefore, easy operational instructions and simple 

data visual patterns are necessary for optimal utilization of the clinical chemistry 

chip. These issues are discussed in the VisWare section of this paper. 

 

VisWare 

 

Multianalytical clinical chemistry data can be displayed via simple patterns, 

providing ease of interpretation and enabling fast treatment decision-making by 

the healthcare provider or patient. High-dimensional data visualization presents a 

large number of dimensions or parameters of the data on a display surface (soft or 

hardcopy). High dimensional data visualization projects n dimensional data onto a 

2D physical medium. Examples of high dimensional data visualization are 

illustrated in Table 4.119-125 Consider a 3D scatterplot. Here the data is n-

dimensional, 3 axes are selected and laid out on the plane (the physical medium). 

The n dimensional points are projected on the 2D surface. Hence this is a 3D 

visualization on the 2D surface. By coloring and shaping the data points, we could 

argue that a 3D scatterplot is a 5D representation of n-dimensional data on a 2D 
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surface. Thus, visualizations can be classified based on the intrinsic 

dimensionality of the logical representation as well as its potential dimensionality 

by adding in additional data attributes.125 

 

Simple visual displays have been the major theme of our philosophy regarding 

data representation.126-127 The first author has emphasized the idea of representing 

diabetes states, symptoms, and measurements via simple facial and iconic data 

displays in his other publications, such as the paper titled “Public Adventures in 

Diabetes: Personal Interactivity in a Modern Science Center.”126-128 We have 

designed a grid or a set of iconic facial displays to represent the diabetiChip’s 

glucose measurements “YTAL-sheikh’s GlucoFacesTM” along with interactive, 

educational manual for data visualization and interpretation that will be available 

soon on the Diabetes Info Portal <http://www.DiabetesInfoPortal.org> (Figure 

16).126-129 The concept of the GlucoFacesTM is simply correlating glucose 

measurements with facial features. For example, low glucose values can be 

represented via the degree of tilting the head, high blood glucose values can be 

represented via the amount of shading pupils of the eyes, normal glucose values 

by the width of upward lips, which refer to happiness. Also, all glucose 

measurement are represented on the nose (a longitudinal bar scaled from 0 to 600 

mg/dl glucose concentration). Color attributes were also added to the bar to alarm 

the patient of diabetes state via the conventional alarming colors (green for 

normal range, yellow for hyperglycemic range, and red for hypoglycemic range). 

Only the general frame of the GlucoFacesTM and the three fundamental 
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GlucoFacesTM (normal, hypoglycemic, and hyperglycemic) are shown in Figure 

16. All glucose measurements are variations of the three fundamental 

GlucoFacesTM. 

 

In summary, we have demonstrated throughout this paper the processes of 

developing the diabetic chip, in general, and an information processing ware 

(InfoWare) for the Diabetic Chip (diabetiChip), in particular. Bioluminescent 

chemical reactions are highly sensitive and can be coupled with many metabolic 

reactions via one of the central nodes of metabolism, such as ATP. Assay 

simulation, experiments, and calibration proved the feasibility of using FFL 

Bioluminescent-kinase coupled glucose assay in designing a diabetic chip that is 

highly sensitive, small, portable, disposable, and cheap. Easing data interpretation 

and glucose monitoring brought about by designing a set of GlucoFacesTM.  
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Figure 1: Schematic Representation of the Diabetes Chip’s Operational Wares: A biological 

sample is first processed and distributed to the analytical wells via a SampleWare. Each 

analytical well contains analyte-specific enzymatic reactions coupled to a bioluminescent 

reaction. Light signals emitted by reactions from the analytical wells are detected by light-

detection elements (LightWare). InfoWare correlates the light signal to analyte 

concentration and reports results via simple visual patterns. 
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Figure 2: ChemCD Basic Design: Operation of the sample reservoir unit is magnified and 

detailed.3 
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Figure 3: ChemCD Advanced Design: The advanced ChemCD design utilizes a high speed 

blood separation unit. Operation of the sample reservoir unit is magnified and detailed.3 
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Figure 4: Schematic Representation of the Detailed Steps in a FFL Bioluminescence 

Reaction.1-3 ATP firsts bind magnesium ions, which facilitates binding on the enzyme firefly 

luciferase ‘FFL’ (Step 1). ATP and luciferin ‘LH2’ gets bound to FFL (Step 2). ATP loses 

orthophosphate and turns into AMP (Step 3). A proton is abstracted from luciferin and 

conformational change in FFL occurs (Steps 4-5). Steps four and five are responsible for the 

25 milliseconds lag phase in light emission. Oxidation of the deprotonized luciferin leads to 

releasing carbon dioxide (CO2), AMP, the complex FFL-oxyluciferin, and light (Step 6). 

Steps six and seven contribute to additional another limitation to light emission; the more 

oxyluciferin (an inhibitor) is released, the less light is emitted. 
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Figure 5: Light Emission Profiles of the FFL Bioluminescent Reaction: The solid curve 

corresponds to ATP concentrations less than 10 nM. The dotted curve corresponds to ATP 

concentrations higher than 10 nM. A one half of light intensity is independent of ATP 

concentration and is always reached after about 100 ms. One the other hand, maximal light 

intensity depends on ATP concentration. There is a lag phase of about 25 ms in emitting 

light. The lag phase is mostly due to conformational change in the firefly luciferase enzyme. 

The light emission decay rate also depends on the concentration of the reaction product 

oxyluciferin, which is a noncompetitive inhibitor and its concentration is directly correlated 

with ATP concentration. 
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Figure 6: The kinetic Model for the FFL Bioluminescence Platform (or ATP assay):1-3 The 

first two steps and the last step are reversible and rapid. Rate constants for backward 

reactions are denoted by minus signs. ATP binds to the enzyme firefly luciferase (FFL) in 

the first step. FFL binds luciferin (LH2) in the second step. Luciferin is oxidized and 

converted to the energetically exited oxyluciferin, and AMP and oxygen are released in the 

third step. The energetically excited oxyluciferin becomes energetically unexcited and 

releases the excitation energy in the form of light in the fourth step. Finally, oxyluciferin is 

dissociated from FFL in the fifth step. 
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Table 1: Values of the Kinetic Rate Constants Used in Simulating the FFL Bioluminescent 

Reaction and Bioluminescence-Kinase Coupled Reactions:1-3 Rows above the double line 

represent kinetic rate constants of the kinase-specific reaction that is coupled to the FFL 

bioluminescence reaction, whereas, the rows below the double line corresponds to the kinetic 

rate constants of the FFL bioluminescent reaction. 

 

Kinetic Rate Constant Value Unit 

Km(Analyte)i Specific to the Metabolic Molar 
Kcat Kinase Specific Activity µmole⋅mg-1⋅minute-1 

Km (ATP) 250 × 10-6 Molar 
Km (Luciferin) 2 × 10-6 Molar 

Ki (Oxyluciferin) ± 23 × 10-8 Molar 
K1 (10 – 30) × 103 Molar-1⋅second-1 

K-1 (4 – 8) × 101 Second-1 
K2 (5 – 15) × 105 Molar-1⋅second-1 
K-2 (5 – 15) × 101 Second-1 
K3 (20 – 40) × 101 Second-1 
K4 (7 – 13) × 101 Second-1 
K5 (7 – 13) × 10-2 Second-1 
K-5 (8 – 12) × 105 Molar-1⋅second-1 
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Figure 7: Optimal Concentrations of ATP, FFL, and Luciferin (LH2) for the FFL 

Bioluminescence Platform Found from Reactions Simulation. 

 

 

[FFL] = Constant = 0.4 µM
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[LH2] = Constant = 0.1 mM 
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Figure 9: YTAL-sheikh’s General Kinase-Kinetic Model for Kinase-Utilized Reactions that 

can be Coupled to the FFL Bioluminescent Reaction. 
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Table 2: Chemistry Protocols for ATP and Glucose Assays.  

Reagent ATP Glucose Glycerol 

Glycine-Glycine Buffer pH = 7.8 pH = 7.8 pH = 7.8 

Firefly Luciferase 0.4 µM 0.4 µM 0.4 µM 

Magnesium Sulphate 5 µM 5 µM 5 µM 

Luciferin 100 µM 100 µM 100 µM 

ATP 0, 0.1, 1, 10, 100 
µM 

500 µM 500 µM 

Glucose  0, 25, 100, 200 µM  

Glucose Kinase  2 µM  
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Figure 10: ATP Assay’s Light Emission Profiles.
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Figure 11: Normalized Light Emission Profiles of the Glucose Assay: Top curve corresponds 

to 25 micromolar of glucose, middle curve to 100 micromolar glucose, and lowest curve to 

200 micromolar glucose. 
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Figure 12: Demonstration of the Standard Additions Assay Calibration Method. 
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Figure 13: Different Methods for Calibration Curve Analysis and Parameterization: Four 

methods are shown: Total area under the curve (1), area under the curve between two time 

points (2), slope value (3), and end point value (4). Method (1) is the easiest as the number of 

emitted photons, which constitute the area under the curve, can be directly obtained from 

the light detector. However, if the calibration curve was not graphically examined, potential 

systematic errors may not be revealed, and thus, total number of emitted photons may not 

be a valid means for assay calibration. Method (2) can solve ambiguities of method (1); a 

certain area (between two time points) under the curve is considered instead. Method (3) 

may be useful if change in analyte concentration can result in noticeable change in the light 

emission profile. Method (4) resembles method (1) in ease (the last signal reading of the 

instrument is considered) and also in not recognizing systematic errors. Taking in 

consideration the pros and cons of these methods, and that experimental light emission 

profiles agreed with the kinetic model and that no significant systematic errors were noticed, 

we used the easiest methods (integrating total area under the curve and end point analyses).
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Figure 14: Glucose Assay Calibration Curve.
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Table 3: Fitting Model and Parameters, and Goodness of Fit for the Glucose Assay 

Calibration Curve. 

Fitting Model Quadratic Polynomial 

f(x) = p1*x^2 + p2*x + p3 

x is normalized by 

mean 81.25 and std 89.85 

Fitting Parameters 

Coefficients (95% confidence) 
 

p1    1.209 (0.9026, 1.514) 

p2 -5.453 (-5.678, -5.227) 

p3    164.1 (163.8, 164.4) 

Goodness of Fit 
SSE 0.0005988 
R-square  0.9998 
Adjusted R-square 0.9999 
RMSE  0.02447 
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Table 4: Some Methods of High-Dimensional Data Visualization.1-7 

Method Description 

2-D or 3-D 
Scatterplot 

A point projection of the data onto a 2D or 3D space. The 
displayed points can have numerous attributes such as 
color, size, shape, texture, motion and even sound; when 
interacted with. 

Scatterplot Matrix An array of scatterplots displaying all possible pairwise 
combinations of dimensions or coordinates. For n 
dimensional data this yields n(n −1)2 scatterplots with 
shared scales. 

Heat Map An array of cells where each cell is colored based on some 
data value or function on the data. 

Height Map An extension of the heat map with the grid represented as a 
height field instead of color. 

Iconic Display Each coordinate represents a parameter or attribute of an 
entity (pixel, icon or glyph) and entities (records) are 
displayed at once on the screen. There are two types; 
dimensions of the n-dimensional data set are mapped to 
certain features of the icon, such as Chernoff faces, where 
data dimensions are mapped to facial features, or star plots, 
where the dimensions are represented as equal angular 
spokes radiating from the center of a circle. 

Pixel Technique An arrangement of the data into an area, starting from 
some origin, according to the size and number of 
dimensions, using various techniques including recursive, 
spiral, and circle segments. The interpretation of the (X, Y) 
position of the cell depends on the mapping. 

Sammon Plot A non-linear analytic or graphical representation that 
projects a data set onto a space of lower dimensionality. 

Polar Chart A circular graph for plotting polar coordinates. Polar 
coordinates map data onto a 2D surface using the angle and 
radius, creating a wrap-around version of a line graph. 

Kohonen Self-
Organizing Map 
(SOM) 

A summarization technique that attempts to reduce the 
complexity of the data set by displaying clusters of the data 
in a grid. The Kohonen SOM is similar to a k-means 
clustering algorithm, extending it by providing a 
topological structure and placing similar objects in 
neighboring clusters. 
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Figure 16: Using Simple Visual Displays (YTAL-sheikh’s GlucoFacesTM) to Present Results 

of the diabetiChip.126-128 
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Abstract 

Multi-analytical clinical data can be displayed via 

simple patterns to ease interpretation and enable fast 

diagnostic decision-making.  We developed and 

employed a software program “MACROPatterns” 

(Multi-Analytical Chemistry-Recognizer of Optical 

Patterns) for this purpose.  MACROPatterns is a 

multi-dimensional visualization program that enables 

simultaneous interpretation of measurements along 

with the recognition of correlated or uncorrelated 

patterns.  Employing visualization concepts and 

approaches in MACROPatterns required knowledge 

in various fields, including visual cognition and 

recognition, art, scientific visualization, and software 

design.  MACROPatterns provides easy navigation 

through different pathologic panels and various 

patterns of each panel.  This could be very useful 

especially in clinical education and training.  

MACROPatterns can be utilized in different 

analytical fields that require interpretation of 

multiple measurements along with the recognition of 

correlated or uncorrelated patterns.  Multi-analytical 

clinical chemistry data visualization via simple iconic 

displays is demonstrated in the diagnosis of 

galactosemia and hyperlipoproteinemia. 

Introduction 

High-dimensional data visualization presents a large 
number of dimensions or parameters of the data on a 
display surface (soft or hardcopy). High dimensional 
data visualization projects n dimensional data onto a 
2D physical medium.1-6 Multi-analytical clinical data 
can be displayed via simple patterns to ease 
interpretation and enable fast diagnostic decision-
making.7-12 Wolfgang Vogt is one of the pioneers in 
clinical data display. Diagnosing hyperthyroid disease 
is a good example of his work.13-15 In the example of 
diagnosing hyperthyroidism, after the tentative 
diagnosis of a hyperthyroid situation has been made, 
free thyroxine (FT4) and free triiodothronine (FT3)
are investigated and one (or both) of these clinical 
chemical parameters is supposed to be elevated. 
Hence a diagnostic model can be formulated: 

- Grave’s Disease � {High FT4 & High FT3}; 
where & refers to a joint state 

- Thyroiditis � {High FT4 & High FT3}

- T4 Thyrotoxicosis � {High FT4}
- T3 Thyrotoxicosis � {High FT3}
- Increased Thyroxine-Binding Globulin (TBG) �

{High FT4 & High FT3}

Clearly, a definite diagnosis is impossible because the 
attributes in the premise are not sufficient. Therefore, 
further attributes like FT3 fraction-uptake by 
analytical method, thyroid-stimulating hormone 
(TSH), and FT4 index (FT4I) have to be added and 
the process has to be repeated for further clarification. 
Junctions of such attributes may be called a pattern. 
Of course, such patterns can also be put into 
premises. The maximum information content can be 
achieved if every clinical chemical parameter is 
determined. This corresponds to an exhaustive 
procedure with high redundancy and cost. Further, it 
is impossible simultaneously to detect 
interrelationships between more than 3D to 5D data. 
The information from a single value of a parameter 
can be clearly realized, but the information due to a 
combination of different quantitative values cannot. 
Therefore, it is important first to find procedures that 
help the physician to choose suitable clinical 
chemical parameters for the solution of a certain 
diagnostic problem, and second to transform 
information contained in the single values into 
general information on one visual display.13-15 

Stimulated by Vogt’s work, we hoped to find 
appropriate means to represent data generated from a 
clinical chemistry chip via simple, yet powerful visual 
patterns. Thus, we developed a software program 
capable of mathematically and graphically 
transforming the clinical chemistry chip’s data into 
simple, recognizable visual diagnostic patterns. We 
called this program MACROPatterns (Multi-
Analytical Chemistry-Recognizer of Optical 
Patterns).  

MACROPatterns 

MACROPatterns is a multi-dimensional visualization 
program that enables simultaneous interpretation of 
measurements along with the recognition of 
correlated or uncorrelated patterns. Employing 
visualization concepts and approaches in 
MACROPatterns required knowledge in various 
fields, including visual cognition and recognition, art, 
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scientific visualization, and software design. 
Visualization concepts and approaches include:  

1) Visual perception; human visual perception 
performs best at one-dimensional space, and the 
larger the dimensionality of space is, the weaker 
human visual perception becomes,  

2) Visual recognition; displaying and adding 
attributes to useful data, and  

3) MACROPatterns functionality; projecting useful 
data onto a two-dimensional physical medium, 
clustering data into simple visual patterns, adding 
attributes (color, brightness, transparency, or shape 
distortion) to patterns, and displaying multiple 
patterns on one screen to ease comparative 
interpretation.7

MACROPatterns provides easy navigation through 
different pathologic panels and various patterns of 
each panel. This could be very useful especially in 
clinical education and training. It assigns the term 
“Panel” to all analytes related to a clinical condition, 
and assigns the term “Patterns” to comparative 
displays (or maps) of the panel’s measurement results 
“Pathological (or the name of the corresponding sub-
disorder)” versus (vs. or v.) normal values 
“Reference” and a cluster of sub-disorder 
“Diagnostic”: Reference vs. Diagnostic (R v. D); 
Diagnostic vs. Pathological (D v. P); Reference vs. 
Pathological (R v. P); and Reference vs. Diagnostic 
vs. Pathological (All). Using MACROPatterns to 

display multi-analytical clinical data is demonstrated 
in two cases: galactosemia and hyperlipoproteinemia. 

MACROPatterns Demonstrated 

Galactosemia: Galactosemia is an inherited disease 
in which galactose (Gal) and the derived toxic 
products galactose-1-phosphate (Gal-1-P), galactitol, 
and galactonate accumulate in the blood due to 
enzymatic deficiency. The severe form (classical 
galactosemia) is a life threatening disease resulting 
from lack of Gal-1-P uridyltransferase (GalT) caused 
by genetic mutation. Classical galactosemia is 
suspected when the initial screening shows a 
galactose value higher than 20 mg/dl and/or GalT 
absence. Galactosemia may also be caused by a 
deficiency of UDP-Galactose-4’-epimerase (GalE) 
associated with increased levels of galactose and Gal-
1-P, or a deficiency of galactokinase (GalK) 
associated with increased levels of galactose, Gal-1-
P, galactitol, and galactonate, see Table 1.11-12, 16-21 

MACROPatterns can be used to display patterns of a 
galactosemia panel consisting of galactose, GalK, 
GalT, GalE, and Gal-1-P along with a map of all the 
patterns of classical galactosemia (see Figures 1 and 
2).  

 

Table 1. Galactosemia Diagnosing Panel7

Gal GalK GalT GalE Gal-1-P Galactitol Galactonate 
Galaktokinase-deficient 
galactosemia + + + - - - Normal Normal + + + + + + + + 

G-1-P uridyltransferase-
deficient galactosemia + + Normal - - - Normal + + + + + + + + + 

UDP-galactose-4’-epimerase-
defecient galactosemia + + Normal Normal - - - + +   

Hyperlipoproteinemia: Hyperlipoproteinemia is 
abnormally high levels of lipids (cholesterol, 
triglycerides, or both) carried by lipoproteins in 
blood; low density lipoprotein (LDL) cholesterol, 
very low density lipoprotein (VLDL) cholesterol, and 
chylomicrons. However, a high level of the high 
density lipoprotein (HDL) cholesterol “the good 
cholesterol” is beneficial and is not considered a 

disorder. Levels of lipoproteins increase slightly as 
people age. Also, they are normally slightly higher in 
men than in women, but increase in women after 
menopause. The increase in levels of lipoproteins 
occurring along with aging can result in 
hyperlipoproteinemia and increase the risk of 
atherosclerosis.16, 22 
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Figure 1. Four iconic displays for the patterns associated with galactosemia: The upper left display is the reference 
pattern, the other three displays show diagnostic patterns imposed on top of the pathological patterns of patients.7

Figure 2. A comparative display of patterns related to galactokinase-deficient galactosemia: The small polygon 
refers to the typical diagnostic pattern of galactokinase-deficient galactosemia. The pentagon refers to the reference 
pattern of the extended galactosemia panel. The big polygon is the patient’s pattern.7

Columns of Table 2 represent the 
hyperlipoproteinemia panel, whereas the rows 
represent the diagnostic patterns. This case is 
uniquely processed in MACROPatterns; unlike the 
other analytes of the hyperlipoproteinemia panel, 
chylomicrons are qualitatively analyzed in urine 
samples. Typically, chylomicrons are reported either 
as negative (clear urine) or positive (creamy urine). 

Thus, MACROPatterns assigns chylomicrons an axis 
with 0 or 1 values. Also a color dimming attribute is 
added to the diagnostic and patient patterns to reflect 
the positive (or creamy) values of chylomicrons. 
Therefore, when chylomicrons exist (positive result) 
the corresponding diagnostic pattern would appear 
dimmer towards the 1 value on the chylomicrons axis 
(see Figures 3 and 4).
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Table 2. Hyperlipoproteinemia diagnosing panel7

Chylomicrons LDL VLDL Cholesterol Triglycerides 
Hyperchylomicronemia + + Normal Normal Normal or + + + + 
Hyperbetalipoproteinemia Normal + + + Normal + + + Normal 
Combined Hyperlipoproteinemia Normal + + + + + + + + 
Hyperprebetalipoproteinemia Normal Normal + + + Normal or + + + + 
Mixed Hyperlipoproteinemia + + Normal + + + + + + + + 

Figure 3. Six iconic displays for the patterns associated with the hyperlipoproteinemia: The upper left display is the 
reference pattern, the other five displays show diagnostic patterns imposed on top of patients’ pathological patterns.7

Figure 4. A comparative display of patterns related to hyperchylomicronemia: The small polygon refers to the 
typical diagnostic pattern of hyperchylomicronemia. The pentagon refers to the reference pattern of the extended 
hyperlipoproteinemia panel. The big polygon is the patient’s pattern.7
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The existing version of MACROPatterns and its 
documentation are available on AL-sheikh’s 
webpage: 
(http://informatics.bmi.utah.edu/wiki/index.php/User:
YTAL). The program is not being improved or 
supported. 
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High-dimensional data visualization presents a large 
number of dimensions or parameters of the data on a display 
surface (soft or hardcopy). High dimensional data visualization 
projects n dimensional data onto a 2D physical medium.1-6 
Multi-analytical clinical data can be displayed via simple pat-
terns to ease interpretation and enable fast diagnostic decision 
making.7-14 Wolfgang Vogt is one of the pioneers in clinical 
data display. Diagnosing hyperthyroid disease is a good example 
of his work.15-17 In the example of diagnosing hyperthyroidism, 
after the tentative diagnosis of a hyperthyroid situation has been 
made, free thyroxine (FT4) and free triiodothronine (FT3) are 
investigated and one (or both) of these clinical chemical param-
eters is supposed to be elevated. Hence a diagnostic model can 
be formulated:
 • Grave’s Disease; {High FT4 & High FT3}; where “&” 

refers to a joint state.
 • Hashimoto’s Disease; {High FT4 & High FT3}.
 • T4 thyrotoxicosis; {High FT4}.
 • T3 thyrotoxicosis; {High FT3}.
 • Increased thyroxine-binding globulin (TBG); {High FT4 

& High FT3}.
Clearly, a definite diagnosis is impossible because the attributes 

in the premise are not sufficient. Therefore, further attributes like 
FT3 fraction-uptake by analytical method, thyroid-stimulating 
hormone (TSH), and FT4 index (FT4I) have to be added and 
the process has to be repeated for further clarification. Junctions 
of such attributes may be called a pattern. Of course, such pat-
terns can also be put into premises. The maximum information 
content can be achieved if every clinical chemical parameter is 

determined. This corresponds to an exhaustive procedure with 
high redundancy and cost. Further, it is impossible simultane-
ously to detect interrelationships between more than 3D to 5D 
data. The information from a single value of a parameter can be 
clearly realized, but the information, due to a combination of 
different quantitative values, cannot. Therefore, it is important 
first to find procedures that help the physician to choose suit-
able clinical chemical parameters for the solution of a certain 
diagnostic problem, and second to transform information 
contained in the single values into general information on one 
visual display.15-17

Stimulated by Vogt’s work, we hoped to find appropriate 
means to represent data generated from a clinical chemistry chip 
via simple, yet powerful, visual patterns. Thus, we developed 
a software program capable of mathematically and graphically 
transforming the clinical chemistry chip’s data into simple, 
recognizable visual diagnostic patterns. We called this program 
MACROPatterns (multi-analytical chemistry-recognizer of 
optical patterns). 

MACROPatterns
MACROPatterns is a multi-dimensional visualization 

program that enables simultaneous interpretation of measure-
ments along with the recognition of correlated or uncorrelated 
patterns. Employing visualization concepts and approaches in 
MACROPatterns required knowledge in various fields, includ-
ing visual cognition and recognition, art and scientific visualiza-
tion, and software design. 

Abstract
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Concepts: MACROPatterns visualization concepts and 
approaches include: 
 1) Visual perception: human visual perception performs best 

at 1-dimensional space, and the larger the dimensionality of 
space is, the weaker human visual perception becomes; 

 2) visual recognition: displaying and adding attributes to 
useful data; and

  3) MACROPatterns functionality: projecting useful data 
onto a 2-dimensional physical medium, clustering data into 
simple visual patterns, adding attributes (color, brightness, 
transparency, or shape distortion) to patterns, and 
displaying multiple patterns on 1 screen to ease comparative 
interpretation.7-9

Environment: MACROPatterns provides easy navigation 
through different pathologic panels and various patterns of each 
panel. This could be very useful, especially in clinical education 
and training. It assigns the term “Panel” to all analytes related 
to a clinical condition, and assigns the term “Patterns” to com-
parative displays (or maps) of the panel’s measurement results 
“Pathological (or the name of the corresponding sub-disorder)” 
versus (vs. or v.) normal values “Reference” and a cluster of sub-
disorder “Diagnostic”: 
 • Reference vs. Diagnostic (R v. D); 
 • Diagnostic vs. Pathological (D v. P); 
 • Reference vs. Pathological (R v. P); and 
 • Reference vs. Diagnostic vs. Pathological (All).

Using MACROPatterns to display multi-analytical clinical 
data is demonstrated in 2 cases: galactosemia and hyperlipopro-
teinemia.

Clinical Examples

Galactosemia

Galactosemia is an inherited disease in which galactose 
(Gal) and the derived toxic products galactose-1-phosphate 
(Gal-1-P), galactitol, and galactonate accumulate in the blood 
due to enzymatic deficiency. The severe form (classical ga-
lactosemia) is a life threatening disease resulting from lack of 
Gal-1-P uridyltransferase (GalT) caused by genetic mutation. 
Classical galactosemia is suspected when the initial screening 
shows a galactose value higher than 20 mg/dL and/or GalT 
absence. Galactosemia may also be caused by a deficiency of 
UDP-Galactose-4'-epimerase (GalE) associated with increased 
levels of galactose and Gal-1-P, or a deficiency of galactokinase 
(GalK) associated with increased levels of galactose, Gal-1-P, 
galactitol, and galactonate (Table 1).13-14,18-23 MACROPat-
terns can be used to display patterns of a galactosemia panel 
consisting of galactose, GalK, GalT, GalE, and Gal-1-P along 
with a map of all the patterns of classical galactosemia (Figures 
1 and 2). 

Table 1_Galactosemia Diagnosing Panel7-9

 Gal GalK GalT GalE Gal-1-P Galactitol Galactonate

Galaktokinase-deficient galactosemia + + + - - -  Normal Normal + + + + + + + +
G-1-P uridyltransferase-deficient galactosemia + + Normal - - - Normal + + + + + + + + +
UDP-galactose-4!-epimerase-defecient galactosemia + + Normal Normal - - - + +

Figure 1_Four iconic displays for the patterns associated with 
galactosemia. The upper left display is the reference pattern; the 
other 3 displays show diagnostic patterns imposed on top of 
the pathological patterns of patients.7-9

Figure 2_A comparative display of patterns related to galactokinase-
deficient galactosemia. The small polygon refers to the typical diag-
nostic pattern of galactokinase-deficient galactosemia. The pentagon 
refers to the reference pattern of the extended galactosemia panel. 
The big polygon is the patient’s pattern.7-9
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Hyperlipoproteinemia

Hyperlipoproteinemia is abnormally high levels of lipids 
(cholesterol, triglycerides, or both) carried by lipoproteins in 
blood; low-density lipoprotein (LDL) cholesterol, very-low-
density lipoprotein (VLDL) cholesterol, and chylomicrons. 
However, a high level of the high-density lipoprotein (HDL) 
cholesterol, the “good cholesterol,” is beneficial and is not 
considered a disorder. Levels of lipoproteins increase slightly 
as people age. Also, they are normally slightly higher in men 
than in women, but increase in women after menopause. The 
increase in levels of lipoproteins occurring along with aging 
can result in hyperlipoproteinemia and increase the risk of 
atherosclerosis.18,24

Columns in  Table 2 represent the hyperlipoproteinemia 
panel, whereas the rows represent the diagnostic patterns. This 
case is uniquely processed in MACROPatterns; unlike the other 
analytes of the hyperlipoproteinemia panel, chylomicrons are 
qualitatively analyzed in urine samples. Typically, chylomicrons 
are reported either as negative (clear urine) or positive (creamy 
urine). Thus, MACROPatterns assigns chylomicrons an axis 
with 0 or 1 values. Also a color-dimming attribute is added to 
the diagnostic and patient patterns to reflect the positive (or 
creamy) values of chylomicrons. Therefore, when chylomicrons 
exist (positive result) the corresponding diagnostic pattern 

would appear dimmer towards the 1 value on the chylomicrons 
axis (Figures 3 and 4).

If further developed to visualize measurements of other 
clinical measurements, MACROPatterns may be a useful soft-
ware program aimed towards enabling differential diagnoses 
of complex diseases and in training clinicians. The reader is 
referred to a Web site (www.DiabetesInfoPortal.org) for further 
details on the design and development of MACROPatterns, 
and for downloading version 1.0 of the software program and 
the associated user manual. LM
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